引进了一种二阶切导数,借助该切导数给出了变序结构集值优化问题取得局部弱非控点的二阶最优性必要条件.在某种特殊情况下,给出了一阶最优性条件.通过修正的Dubovitskij-Miljutin切锥导出的约束规格,给出了两个集值映射之和的二阶相依切导数的关系式,进一步得到目标函数与变锥函数的二阶相依切导数分开形式的最优性必要条件.