Dantzig G B, Fulkerson D R, Johnson S M. Solution of a large-scale traveling salesman problem [J]. Operations Research, 1954, 2: 393-410.
Gomory R E. Outline of an algorithm for integer solutions to linear programs [J]. Bulletin of the American Mathematical Society, 1958, 64: 275-278.
Garey M R, Johnson D S. Computer and Intractability: A Guide to the Theory of NP-Completeness [M]. New York: Freeman, 1979.
Schrijver A. Theory of Linear and Integer Programming [M]. New York: Wiley, 1986.
Nemhauser G L, Wolsey L A. Integer and Combinatorial Optimization [M]. New York: Wiley, 1988.
Wolsey L A. Integer Programming [M]. New York: Wiley, 1998.
Nemhauser G L, Wolsey L A. Integer and Combinatorial Optimization [M]. New York: Wiley, 1988. 孙小玲, 李端. 整数规划 [M]. 北京: 科学出版社, 2010.
J\"unger M, Liebling T, Naddef D, et al. 50 Years of Integer Programming 1958-2008: From the Early Years to the State-of-the-Art [M]. Berlin: Springer-Verlag, 2010.
Barnhart C, Johnson E L, Nemhauser G L, et al. Branch-and-price: Column generation for solving huge integer programs [J]. Operations Research, 1998, 46: 316-329.
Lenstra H W. Integer programming with a fixed number of variables [J]. Mathematics of Operations Research, 1983, 8: 538-548.
Li D, Sun X L. Nonlinear Integer Programming [M]. New York: Springer-Verlag, 2006.
Goemans M X, Williamson D P. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming [J]. Journal of the ACM, 1995, 42: 1115-1145.
Lasserre J B. Global optimization with polynomials and the problem of moments [J]. SIAM Journal on Optimization, 2001, 11: 796-817.
Parrilo P A. Semidefinite programming relaxations for semialgebraic problems [J]. Mathematical Programming, 2003, 96: 293-320.
Vandenberghe L, Boyd S. Semidefinite programming [J]. SIAM Review, 1996, 38: 49-95.
Ye Y. A 699-approximation algorithm for Max-Bisection [J]. Mathematical Programming, 2001, 90: 101-111.
方述诚, 邢文训. 线性锥优化 [M]. 北京: 科学出版社, 2013.
Nesterov Y. Semidefinite relaxation and nonconvex quadratic optimization [J]. Optimization Methods and Software, 1998, 9: 141-160.
Ye Y. Approximating quadratic programming with bound and quadratic constraints [J]. Mathematical Programming, 1999, 84: 219-226.
Frieze A, Jerrum M. Improved approximation algorithms for max k-cut and max bisection [J]. Algorithmica, 1997, 18: 67-81.
Ye Y. A 699-approximation algorithm for Max-Bisection [J]. Mathematical Programming, 2001, 90: 101-111.
Halperin E, Zwick U. A unified framework for obtaining improved approximation algorithms for maximum graph bisection problems [J]. Random Structures \rm \& Algorithms, 2002, 20: 382-402.
Bienstock D. Computational study of a family of mixed-integer quadratic programming problems [J]. Mathematical Programming, 1996, 74: 121-140.
Gao J J, Li D. A polynomial case of the cardinality-constrained quadratic optimization problem [J]. Journal of Global Optimization, 2013, 56: 1441-1455.
Bonami P, Lejeune M A. An exact solution approach for portfolio optimization problems under stochastic and integer constraints [J]. Operations Research, 2009, 57: 650-670.
Bertsimas D, Shioda R. Algorithm for cardinality-constrained quadratic optimization [J]. Computional Optimization and Applications, 2009, 43: 1-22.
Cui X T, Zheng X J, Zhu S S, et al. Convex relaxations and MIQCQP reformulations for a class of cardinality-constrained portfolio selection problems [J]. Journal of Global Optimization, 2013, 56: 1409-1423.
Li D, Sun X L, Wang J. Optimal lot solution to cardinality constrained mean-variance formulation for portfolio selection [J]. Mathematical Finance, 2006, 16: 83-101.
Shaw D X, Liu S, Kopman L. Lagrangian relaxation procedure for cardinality-constrained portfolio optimization [J]. Optimizaion Methods and Software, 2008, 23: 411-420.
Cesarone F, Scozzari A, Tardella F. Efficient algorithms for mean-variance portfolio optimization with hard real-world constraints [J]. Giornale dell'Istituto Italiano degli Attuari, 2009, 72: 37-56.
Blog B, Hoek Van der G, Rinnooy Kan A H G, et al. The optimal selection of small portfolios [J]. Management Science, 1983, 29: 792-798.
Jacob N L. A limited-diversification portfolio selection model for the small investor [J]. Journal of Finance, 1974, 29: 847-856.
Jobst N J, Horniman M D, Lucas C A, et al. Computational aspects of alternative portfolio selection models in the presence of discrete asset choice constraints [J]. Quantitative Finance, 2001, 1: 489-501.
Mitra G, Ellison F, Scowcroft A. Quadratic programming for portfolio planning: insights into algorithmic and computational issues. part II: Processing of portfolio planning models with discrete constraints [J]. Journal of Asset Management, 2007, 8: 249-258.
Xie J, He S, Zhang S. Randomized portfolio selection, with constraints [J]. Pacific Journal of Optimization, 2008, 4: 89-112.
Frangioni A, Gentile C. Perspective cuts for a class of convex 0-1 mixed integer programs [J]. Mathematical Programming, 2006, 106: 225-236.
Frangioni A, Gentile C, Lacalandra F. Tighter approximated MILP formulations for unit commitment problems [J]. IEEE Transactions on Power Systems, 2009, 24: 105-113.
Frangioni A, Gentile C. SDP diagonalizations and perspective cuts for a class of nonseparable MIQP [J]. Operations Research Letters, 2007, 35: 181-185.
Frangioni A, Gentile C. A computational comparison of reformulations of the perspective relaxation: SOCP vs. cutting planes [J]. Operations Research Letters, 2009, 37: 206-210.
G\"unl\"uk O, Linderoth J. Perspective reformulations of mixed integer nonlinear programs with indicator variables [J]. Mathematical Programming, 2010, 124: 183-205.
Hiriart-Urruty J B, Lemar\'echal C. Convex Analysis and Minimization Algorithms: Fundamentals [M]. New York: Springer-Verlag, 1993.
Alizadeh F, Goldfarb D. Second-order cone programming [J]. Mathematical Programming, 2003, 95: 3-51.
Ben-Tal A, A S Nemirovski. Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications [J]. MPS-SIAM Series on Optimization. Society for Industrial Mathematics, 2001.
Zheng X J, Sun X L, Li D. Improving the performance of MIQP solvers for quadratic programs with cardinality and minimum threshold constraints: a semidefinite program approach [J]. INFORMs Journal on Computing, 2013. To appear.
Frangioni A, Gentile C, Grande E, et al. Projected perspective reformulations with applications in design problems [J]. Operations Research, 2011, 59: 1225-1232.
Farias Jr de I R, Zhao M. A polyhedral study of the semi-continuous knapsack problem [J]. Mathematical Programming, 2012, Doi: 10.1007/s10107-012-0566-3.
Farias Jr de I R, Nemhauser G L. A polyhedral study of the cardinality constrained knapsack problem [J]. Mathematical Programming, 2003, 96: 439-467.
Gao J J, Li D. Optimal cardinality constrained portfolio selection [J]. Operations Research, 2013, 61: 745-761.
Jansen R, Dijk Van R. Optimal benchmark tracking with small portfolios [J]. The Journal of Portfolio Management, 2002, 28: 33-39.
文再文, 印卧涛, 刘歆, 等. 压缩感知和稀疏优化简介~[J]. 运筹学学报, 2012, 16(3): 49-64.
Bach F, Ahipasaoglu S D, d'Aspremont A. Convex relaxations for subset selection [J]. arXiv preprint, arXiv: 1006.3601, 2010.
Jokar S, Pfetsch M E. Exact and approximate sparse solutions of underdetermined linear equations [J]. SIAM Journal on Scientific Computing, 2008, 31: 23-44.
Bruckstein A M, Donoho D L, Elad M. From sparse solutions of systems of equations to sparse modeling of signals and images [J]. SIAM Review, 2009, 51: 34-81.
Donoho D L, Huo X. Uncertainty principles and ideal atomic decomposition [J]. IEEE Transactions on Information Theory, 2001, 47: 2845-2862.
Cand\`es E J, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information [J]. IEEE Transactions on Information Theory, 2006, 52: 489-509.
Ge D, Jiang X, Ye Y. A note on complexity of l_p minimization [J]. Mathematical Programming, 2011, 129: 285-299.
Lai M J, Wang J. An unconstrained \ell_q minimization with 0< q\le 1 for sparse solution of under-determined linear systems [J]. SIAM Journal on Optimization, 2010, 21: 82-101.
Fung G M, Mangasarian O L. Equivalence of minimal \ell_0-and \ell_p-norm solutions of linear equalities, inequalities and linear programs for sufficiently small p [J]. Journal of Optimization Theory and Applications, 2011, 151: 1-10.
Chen X, Ge D, Wang Z, et al. Complexity of unconstrained l_2-l_p minimization [J]. Mathematical Programming, 2014, 143(1-2): 371-383. Chen X, Xu F, Ye Y. Lower bound theory of nonzero entries in solutions of l_2-l_p minimization [J]. SIAM Journal on Scientific Computing, 2010, 32: 2832-2852.
Mangasarian O L. Minimum-support solutions of polyhedral concave programs [J]. Optimization, 1999, 45: 149-162.
Zheng X J, Sun X L, Li D, et al. Successive convex approximations to cardinality-constrained convex programs: A piecewise-linear DC approach [J]. Computational Optimization and Applications, 2013, Doi: 10.1007/s10589-013-9582-3.
Goldstein S, Osher and T. The split Bregman method for \ell_1-regularized problems [J]. SIAM Journal on Imaging Sciences, 2009, 2: 323-343.
Yin W T, Osher S, Goldfarb D, et al. Bregman iterative algorithms for \ell_1-minimization with applications to compressed sensing [J]. SIAM Journal on Imaging Sciences, 2008, 1: 143-168.
B S He, M Tao, X M Yuan. Alternating direction method with Gaussian back substitution for separable convex programming [J]. SIAM Journal on Optimization, 2012, 22: 313-340.
Shen Y, Wen Z Z, Zhang Y. Augmented Lagrangian alternating direction method for matrix separation based on low-rank factorization [J]. Optimization Methods and Software, 2012, 29: 239-263.
Wen Z W, Peng X H, Liu X, et al. Asset allocation under the Basel Accord risk measures [O]. Technical report, 2013, Available at: http: //www. optimization-online. org/DB_-FILE/2013/01/3730.pdf.
Bai X D, Sun J, Sun X L, et al. An alternating direction method for chance-constrained optimization problems with discrete distributions [O]. Technical report, School of Management, Fudan University, 2012. http: //www.optimization-online.org/DB_-FILE/2012/04/3448.pdf.
Cui X T, Zhu S S, Sun X L, et al. Portfolio selection with nonparametric value-at-risk [R]. Technical report, School of Management, Fudan University, 2013.
Lu Z, Zhang Y. Penalty decomposition methods for rank minimization [C]//Advances in Neural Information Processing Systems, 2011, 46-54.
Lu Z, Zhang Y. Sparse approximation via penalty decomposition methods [J]. SIAM Journal on Optimization, 2013, 23(4), 2448–2478. Zheng X J, Sun X L. Alternating direction methods for mathematical programs with cardinality constraint and semicontinuous variables [R]. Technical report, School of Management, Fudan University, 2013.
Sturm J F, Zhang S Z. On cones of nonnegative quadratic functions [J]. Mathematics of Operations Research, 2003, 28: 246-267.
Burer S. On the copositive representation of binary and continuous nonconvex quadratic programs [J]. Mathematical Programming, 2009, 120: 479-495.
Murty K G, Kabadi S N. Some NP-complete problems in quadratic and nonlinear programming [J]. Mathematical Programming, 1987, 39: 117-129.
Parrilo P A. Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization [D]. Pasadena: California Institute of Technology, 2000.
Klerk de E, Pasechnik D V. Approximation of the stability number of a graph via copositive programming [J]. SIAM Journal on Optimization, 2002, 12: 875-892.
Bomze I M, Klerk de E. Solving standard quadratic optimization problems via linear, semidefinite and copositive programming [J]. Journal of Global Optimization, 2002, 24: 163-185. Quist A J, Klerk de E, Roos C, et al. Copositive realxation for genera quadratic programming [J]. Optimization Methods and Software, 1998, 9: 185-208.
Berman A, Shaked-Monderer N. Completely Positive Matrices [M]. Singapore: World Scientific Publishing, 2003.
Bomze I M, D\"ur M, Klerk de E, et al. On copositive programming and standard quadratic optimization problems [J]. Journal of Global Optimization, 2000, 18: 301-320.
Dong H B, Anstreicher K. A note on 5\times 5 completely positive matrices [J]. Linear Algebra and its Applications, 2010, 433: 1001-1004.
Dong H B, Anstreicher K. Separating doubly nonnegative and completely positive matrices [J]. Mathematical Programming, 2013, 137: 131-153.
Lasserre J B. New approximations for the cone of copositive matrices and its dual [J]. Mathematical Programming, 2013, Doi: 10.1007/s10107-013-0632-5.
Deng Z B, Fang S C, Jin Q W, et al. Detecting copositivity of a symmetric matrix by an adaptive ellipsoid-based approximation scheme [J]. European Journal of Operational Research, 2013, 229: 21-28.
Tian Y, Fang S C, Deng Z B, et al. Computable representation of the cone of nonnegative quadratic forms over a general second-order cone and its application to completely positive programming [J]. Management, 2013, 9: 703-721. |