运筹学学报 ›› 2014, Vol. 18 ›› Issue (1): 9-38.
戎卫东1, 杨新民2,*
出版日期:
2014-03-15
发布日期:
2014-03-15
通讯作者:
杨新民
E-mail:xmyang@cqnu.edu.cn
基金资助:
国家自然科学基金 (No. 11271391), 运筹学与系统工程重庆市市级重点实验室专项课题 (No. 956806)
RONG Weidong1, YANG Xinmin2,*
Online:
2014-03-15
Published:
2014-03-15
摘要: 在一定的约束条件下极小化或极大化向量值函数,这就是向量优化. 向量优化是数学规划学科中的重要分支学科,是具有重要应用价值的、新兴的和多学科交叉的研究领域. 自1950年以来,已经逐步形成较完整的理论体系,算法研究也有一定的进展,应用日渐广泛. 简述了它的发展历程、主要特征、基本理论和方法,综述了国内学者近几年来在若干领域的发展状况和主要代表性成果,展望了向量优化学科未来的发展方向.
中图分类号:
戎卫东,杨新民. 向量优化及其若干进展[J]. 运筹学学报, 2014, 18(1): 9-38.
RONG Weidong, YANG Xinmin. Vector optimization and its developments[J]. Operations Research Transactions, 2014, 18(1): 9-38.
陈光亚. 向量优化问题某些基础理论及其发展 [J]. 重庆师范大学学报 (自然科学版),2005, 22(3): 1-4. Jahn J. Vector Optimization: Theory, Applications and Extensions [M]. New York: Springer-Verlag, 2011. Craven B D, Mond B. Transposition theorems for cone-convex functions [J]. SIAM Journal on Applied Mathematics, 1973, 24: 603-612. Hayashi M, Komiya H. Perfect duality for convexlike programs [J]. Journal of Optimization Theory and Applications, 1982, 38: 269-275. Jeyakumar V. A generalization of a minimax theorem of Fan via a theorem of the alternative [J]. Journal of Optimization Theory and Applications, 1986, 48: 525-533. Yang X M. Alternative theorems and optimality conditions with weakened convexity [J]. Opsearch, 1992, 29(2): 125-135. Song W. Lagrangian duality for minimization of nonconvex multifunctions [J]. Journal of Optimization Theory and Applications, 1997, 93: 167-182. Yang X M, Li D, Wang S Y. Near-subconvexlikeness in vector optimization with set-valued functions [J]. Journal of Optimization Theory and Applications, 2001, 110: 413-427. Sach P H. New generalized convexity notion for set-valued maps and application to vector optimization [J]. Journal of Optimization Theory and Applications, 2005, 125: 157-179. Alders C D, Sposito V A. On a sufficient optimality condition over convex feasible regions [J]. Bulletin of the Australian Mathematical Society, 1977, 16: 199-202. Luc D T. Theory of vector optimization [M]// Lecture Notes in Economic and Mathematical Systems, Berlin: Springer-Verlag, 1989, 319. Kuhn H W, Tucker A W. Nonlinear programming [C]//Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability. Berkeley: University of California Press, 1951, 481-492. Geoffrion A M. Proper efficiency and the theory of vector maximization [J]. Journal Mathematical Analysis and Applications, 1968, 22: 618-630. Borwein J M. Proper efficient points for maximizations with respect to cones [J]. SIAM Journal on Control and Optimization, 1977, 15: 57-63. Benson H P. An improved definition of proper efficiency for vector maximization with respect to cones [J]. Journal Mathematical Analysis and Applications, 1979, 71: 232-241. Henig M I. Proper efficiency with respect to cones [J]. Journal of Optimization Theory and Applications, 1982, 36: 387-407. Borwein J M, Zhuang D M. Super efficiency in convex vector optimization [J]. ZOR Methods and Models of Operations Research, 1991, 35: 175-184. Zheng X Y. Proper efficiency in locally convex topological vector spaces [J]. Journal of Optimization Theory and Applications, 1997, 94: 469-486. Loridan P. Necessary condition for \varepsilon-optimality [J]. Mathematical Programming Study, 1982, 19: 140-152 Isac G. Ekeland's principle and Pareto \varepsilon-efficiency [M]//Multi-Objective Programming and Goal Programming, Lecture Notes in Economic and Mathematical Systems, New York: Springer-Verlag, 1996, 432. Tammer C. A generalization of Ekeland's variational principle [J]. Optimization, 1992, 25: 129-141. Staib T. On two generalizations of Pareto minimality [J]. Journal of Optimization Theory and Applications, 1988, 59(2): 289-306. Rong W D, Ma Y. Properly efficient solutions of vector optimization problems with set-valued maps [J]. OR Transactions, 2000, 4(4): 21-32. Yang X M, Yang X Q, Chen G Y. Theorems of the alternative and optimization with set-valued maps [J]. Journal of Optimization Theory and Applications, 2000, 107: 627-640. Li Z F, Benson proper efficiency in the vector optimization of set-valued maps [J]. Journal of Optimization Theory and Applications, 1998, 98(3): 623-649. Chen G Y, Rong W D. Characterizations of the Benson proper efficiency for nonconvex vector optimization [J]. Journal of Optimization Theory and Applications, 1998, 98(2): 365-384. Mangasarian O L. Second and higher order duality in nonlinear programming [J]. Journal Mathematical Analysis and Applications, 1975, 51: 607-620. Kim D S, Yun Y B. Second-order symmetric and self duality in multiobjective programming [J]. Applied Mathematics Letters, 1997, 10(2): 17-22. Yang X M, Hou S H. Second-order symmetric duality in multiobjective programming [J]. Applied Mathematics Letters, 2001, 14: 587-592. Giannessi F. Theory of alternative, quadratic programs and complementarity problems [M]// Variational Inequalities and Complementarity Problems, New York: Wiley, 1980, 151-186. Chen G Y, Cheng G M. Vector variational inequality and vector optimization [M]//Toward Interactive and Intelligent Decision Support Systems, Lecture Notes in Economics and Mathematical Systems, Heidelberg: Springer-Verlag, 1987, 408-416. Giannessi F. Theory of alternative, quadratic programs and complementarity problems [M]// Variational Inequalities and Complementarity Problems, New York: Wiley, 1980, 151-186. 陈光亚. 向量变分不等式及其在多目标最优化中的应用 [J]. 科学通报, 1987, 8: 561-563. Chen G Y, Yang X Q. Vector complementarity problem and its equivalences with weak minimal element in ordered spaces [J]. Journal Mathematical Analysis and Applications, 1990, 153: 136-158. Chen G Y, Craven B D. A vector variational inequality and optimization over an efficient set [J]. ZOR Methods and Models of Operations Research, 1990, 3: 1-12. Chen G Y. Existence of solution for a vector variational inequality: an extension of the Hartmann-Stampacchia theorem [J]. Journal of Optimization Theory and Applications , 1992, 74: 445-456. Yang X M, Yang X Q, Teo K L. Some remarks on the Minty vector variational inequality [J]. Journal of Optimization Theory and Applications, 2004, 121: 193–201. Zheng X Y. Generalizations of a theorem of Arrow, Barankin, and Blackwell in topological vector spaces [J]. Journal of Optimization Theory and Applications, 1998, 96(1): 221–233. 傅万涛. 集值映射多目标规划问题的解集的连通性 [J]. 高校应用数学学报, 1994, 9(3): 321-328. Gutierrez C, Jimenez B, Novo V. A unified approach and optimality conditions for approximate solutions of vector optimization problems [J]. SIAM Journal on Optimization, 2006, 17: 688-710. Gao Y, Yang X M, Teo K L. Optimality conditions for approximate solutions of vector optimization problems [J]. Journal of Industrial and Management Optimization, 2011, 7: 483-496. Zhao K Q, Yang X M. E-Benson proper efficiency in vector optimization [J]. Optimization, Doi: org/10.1080/02331934.2013.798321. Zhao K Q, Yang X M. E-proper saddle points and E-proper Duality in Vector Optimization with set-valued maps [J]. Taiwanese Journal of Mathematics, Doi: 10.11650/tjm.17.2013.3473. Zheng X Y, Ng K F. A unified separation theorem for closed sets in a Banach space and optimality conditions for vector optimization [J]. SIAM Journal on Optimization, 2011, 21: 886-911. Qiu Q S, Yang X M. Some properties of approximate solutions for vector optimization problem with set-valued functions [J]. Journal of Global Optimization, 2010, 47: 1-12. Qiu Q S. Scalarization of approximate solution for vector equilibrium problems [J]. Journal of Industrial and Management Optimization, 2013, 9(1): 143-151. Gao Y,Hou S H, Yang X M. Existence and optimality conditions for approximate solutions to vector optimization problems [J]. J Opt Theory Appl, 2012, 152: 97-120. Liu C P, Lee H W. Lagrange multiplier rules for approximate solutions in vector optimization [J]. Journal of Industrial and Management Optimization, 2012, 8(3): 749-764. Chen C R, Li S J, Fang Z M. On the solution semicontinuity to a parametric generalized vector quasivariational inequality [J]. Computers and Mathematics with Applications, 2010, 60: 2417-2425. Li X B, Li S J. Continuity of approximate solution mappings for parametric equilibrium problems [J]. Journal of Global Optimization, 2011, 51: 541-548. Li S J, Liu H M, Zhang Y, et al. Continuity of the solution mappings to parametric generalized strong vector equilibrium problems [J]. Journal of Global Optimization, 2013, 55: 597-610. Xu Y D, Li S J. On the lower semicontinuity of the solution mappings to a parametric generalized strong vector equilibrium problem [J]. Positivity, 2013, 17: 341-353. Li S J, Li X B, Wang L N, et al. The H\"{o}lder continuity of solutions to generalized vector equilibrium problems [J]. European Journal of Operational Research, 2009, 199: 334-338. Fang Y P, Huang N J, Yao J C. Well-posedness of mixed variational inequalities, inclusion problems and fixed point problems [J]. Journal of Global Optimization, 2008, 41: 117-133. Fang Y P, Huang N J, Yao J C. Well-posedness by perturbations of mixed variational inequalities in Banach spaces [J]. European Journal of Operational Research, 2010, 201(3): 682-692. Huang X X, Yang X Q. Generalized Levitin-Polyak well-posedness in constrained optimization [J]. SIAM Journal on Optimization, 2006, 17: 243-258. Huang X X, Yang X Q. Further study on the Levitin-Polyak well-posedness of constrained convex vector optimization problems [J]. Nonlinear Analysis: Theory, Methods and Applications, 2012, 75: 1341-1347. Huang X X, Yang X Q. Levtin-Polyak well-posedness for vector variational inequalities with functional constraints [J]. Numerical Functional Analysis and Optimization, 2010, 31: 440-459. Luo H L, Huang X X, Peng J W. Generalized well-posedness in convex vector optimization [J]. Pacific Journal of Optimization, 2011, 7: 353-367. Peng J W, Wang Y, Wu S Y. Levitin-Polyak well-posedness for vector quasi-equilibrium problems with functional constraints [J]. Taiwanese Journal of Mathematics, 2012, 16(2): 635-649. Peng J W, Wu S Y, Wang Y. Levitin-Polyak well-posedness of generalized vector quasi-equilibrium problems with functional constraints [J]. Journal of Global Optimization, 2012, 52(4): 779-795. Gong X H. Efficiency and Henig efficiency for vector equilibrium problems [J]. Journal of Optimization Theory and Applications, 2001, 108:139-154. Gong X H. Connectedness of the solution sets and scalarization for vector equilibrium problems [J]. Journal of Optimization Theory and Applications, 2007, 133: 151-161. Qiu Q S, Yang X M. Connectedness of Henig weakly efficient solution set for set-valued optimization problems [J]. Journal of Optimization Theory and Applications, 2012, 152: 439-449. Chen C, Cheng T C E, Li S J, et al. Nonlinear augmented Lagrangian for nonconvex multiobjective optimization [J]. Journal of Industrial and Management Optimization, 2011, 7(1): 157-174. Zhou Y Y, Yang X Q. Augmented Lagrangian functions for constrained optimization problems [J]. Journal of Global Optimization, 2012, 52(1): 95-108. Li S J, Sun X K, Zhu S K. Higher-order optimality conditions for strict minimality in set-valued optimization [J]. Journal of Nonlinear and Convex Analysis, 2012, 13: 281-291. Zhou Z A, Yang X M. Optimality conditions of generalized subconvexlike set-valued optimization problems based on the quasi-relative interior [J]. Journal of Optimization Theory and Applications, 2011, 150: 327-340. Li Z M. The optimality conditions for vector optimization of set-valued maps [J]. Journal of Mathematical Analysis and Application, 1999, 237: 413-424. Zhou Z A, Yang X M, Peng J W. Optimality conditions of set-valued optimization problems involving relative algebraic interior in ordered linear spaces [J]. Optimization, Doi: 10.1080/0233~1934-2012.656117. Zhou Z A, Yang X M, Peng J W. Optimality conditions of vector optimization problems with set-valued maps based on the algebraic interior in real linear spaces [J]. Optimization Letters, Doi: 10.1007/s11590-013-0620-y. Li T Y, Xu Y H. The strictly efficient subgradient of set-valued optimization [J]. Bulletin of the Australian Mathematical Society, 2007, 75: 361-371. Zhou Z A, Yang X M, Peng J W. \varepsilon-strict subdifferentials of set-valued maps and optimality conditions [J]. Nonlinear Analysis, 2012, 75: 3761-3775. Zheng X Y, Yang X Q. Conic positive definiteness and sharp minima of fractional orders in vector optimization problems [J]. Journal of Mathematical Analysis and Applications, 2012, 391(2): 619-629. Zhang Y, Li S J. Minimax theorems for scalar set-valued mappings with nonconvex domains and applications [J]. Journal of Global Optimization, 2013, 57: 1359-1373. Zhang Y, Li S J. Minimax problems of uniformly same-order set-valued mappings [J]. Bulletin of the Korean Mathematical Society, 2013, 5: 1639-1650. Zheng X Y, Ng K F. Metric subregularity and calmness for nonconvex generalized equations in Banach spaces [J]. SIAM Journal on Optimization, 2010, 20: 2119-2136. Yang X M, Yang X Q, Teo K L. Non-differentiable second order symmetric duality in mathematical programming with F-convexity [J]. European Journal of Operational Research, 2003, 144(3): 554-559. Yang X M, Yang X Q, Teo K L. Higher-order generalized convexity and duality in nondifferentiable multiobjective mathematical programming [J]. Journal of Mathematical Analysis and Applications, 2004, 297(1): 48-55. Yang X M, Yang X Q, Teo K L. Mixed type converse duality in multiobjective programming problems [J]. Journal Mathematical Analysis and Applications, 2005, 304(2): 394-398. Yang X M, Yang X Q, Teo K L, et al. Second order symmetric duality in non-differentiable multiobjective programming with F-convexity [J]. European Journal of Operational Research, 2005, 164(2): 406-416. Yang X M, Yang X Q, Teo K L, et al. Multiobjective second-order symmetric duality with F-convexity [J]. European Journal of Operational Research, 2005, 165(3): 585-591. Yang X M, Yang X Q, Teo K L. Converse duality in nonlinear programming with cone constraints [J]. European Journal of Operational Research, 2006, 170(2): 350-354. Zheng X Y, Yang X Q. The structure of weak sharp Pareto solution sets in piecewise linear multiobjective optimization in normed spaces [J]. Sciences in China, 2008, 51(7): 1243-1256. Zheng X Y. Pareto solutions of polyhedral-valued vector optimization problems in Banach spaces [J]. Set-Valued Analysis, 2009, 17: 389-408. Fang Y P, Meng K W, Yang X Q. Piecewise linear multicriteria programs: the continuous case and its discontinuous generalization [J]. Operations Research, 2012, 60(2), 398-409. Fang Y P, Huang N J, Yang X Q. Local smooth representations of parametric semiclosed polyhedra with applications to sensitivity in piecewise linear programs [J]. Journal of Optimization Theory and Applications,2012, 155(3), 810-839. Gong X H. Continuity of the solution set to parametric weak vector equilibrium problems [J]. Journal of Optimization Theory and Applications,2008, 139: 35-46. Gong X H. Lower semicontinuity of the set of efficient solutions for generalized systems [J]. Journal of Optimization Theory and Applications,2007, 138: 197-205. Peng Z Y, Yang X M. Semicontinuity of the solution mappings to weak generalized parametric Ky Fan inequality problems with trifunctions [J]. Optimization, Doi: 10.1080/ 02331934.2012.~660693. Li S J, Meng K W. Calculus rules for derivatives of multimaps [J]. Set-Valued and Variational Analysis, 2009, 17: 21-39. Li S J, Li M H. Sensitivity analysis of parametric weak vector equilibrium problems [J]. Journal of Mathematical Analysis and Applications, 2011, 380: 354-362. Li M H, Li S J. Robinson metric regularity of parametric variational systems [J]. Nonlinear Analysis: Theory, Methods and Applications, 2011, 74: 2262-2271. Xue X W, Li S J. Coderivatives of the generalized perturbation maps [J]. Positivity, 2011, 15: 309-329. Li S J, Penot J P, Xue X W. Codifferential calculus [J]. Set-Valued and Variational Analysis, 2011, 19: 505-536. Li J, Huang N J, Yang X Q. Weak sharp minima for set-valued vector variational inequalities with an application [J]. European Journal of Operational Research , 2010, 205: 262-272. Huang N J, Li J, Yang X Q. Weak sharpness for gap functions in vector variational inequalities [J]. Journal of Mathematical Analysis and Applications, 2012, 394(2): 449-457. Xue X W, Li S J. Coderivatives of the generalized perturbation maps [J]. Positivity, 2011, 15: 309-329. Zhou L W, Huang N J. Generalized KKM theorems on Hadamard manifolds with applications [EB/OL]. [2013-10-20]. http://www.paper.edu.cn/index.php/default/releasepaper/content/200906-669. Zhou L W, Huang N J. Existence of solutions for vector optimization on Hadamard manifolds [J]. Journal of Optimization Theory and Applications, 2013, 157: 44-53. Li X B, Huang N J. Generalized vector quasi-equilibrium problems on Hadamard manifolds [J]. Optimization Letters, Doi: 10.1007/s11590-013-0703-9. Chen Z, Huang X X, Yang X Q. Generalized proximal point algorithms for multiobjective optimization problems [J]. Journal of Applied Mathematics, 2011, 90(6): 935-949. Chen Z, Huang H Q, Zhao K Q. Approximate generalized proximal-type method for convex vector optimization problem in Banach spaces [J]. Computers and Mathematics with Applications, 2009, 57(7): 1196-1203. Chen Z, Xiang C H, Zhao K Q, et al. Convergence analysis of Tykhonov-type regularization algorithms for multiobjective optimization problems [J]. Applied Mathematics and Computation, 2009, 211(1): 167-172. Yu P L. Cone convexity, cone extreme points, and nondominated solutions in decision problems with multiobjectives [J]. Journal of Optimization Theory and Applications, 1974, 14: 319-377. 徐家旺, 黄小原. 鲁棒优化研究的新进展 [C]//中国企业运筹学学术交流大会论文集, 2007, 20-26. 李亚林, 陈静, 罗彪, 等. 一种求解鲁棒优化问题的多目标进化方法 [J]. 计算机工程与应用,2011, 47(24): 58-62. 邓乃阳, 田英杰. 数据挖掘中的新方法------支持向量机 [M]. 北京:科学出版社,2004. 袁玉波, 杨传胜, 黄廷祝. 数据挖掘与最优化技术及其应用 [M]. 北京:科学出版社,2007. Yu P L. Cone convexity, cone extreme points, and nondominated solutions in decision problems with multiobjectives [J]. Journal of Optimization Theory and Applications, 1974, 14: 319-377. Chen G Y, Huang X X. A unified approach to the existing three types of variational principles for vector valued functions [J]. Mathematical Methods of Operations Research, 1998, 48: 349-357. |
[1] | 杨新民, 赵克全. 向量优化问题的近似解研究[J]. 运筹学学报, 2017, 21(4): 1-18. |
[2] | 唐莉萍, 杨新民. 向量优化问题的一类非线性标量化定理[J]. 运筹学学报, 2016, 20(3): 85-91. |
[3] | 张万里, 夏远梅, 赵克全. 向量优化中基于拟内部的弱C(\varepsilon)-有效解的标量化[J]. 运筹学学报, 2016, 20(2): 121-126. |
[4] | 郭辉, 白延琴. 向量优化问题中的弱S-有效解[J]. 运筹学学报, 2016, 20(1): 54-60. |
[5] | 唐莉萍, 杨玉红. 向量优化中Free Disposal集的某些对偶性质[J]. 运筹学学报, 2015, 19(4): 107-113. |
[6] | 郭辉. 向量优化问题 (C,\varepsilon)-弱有效解的一种非线性标量化性质[J]. 运筹学学报, 2015, 19(2): 105-110. |
[7] | 唐莉萍, 杨新民. 两类锥广义伪不变凸性的刻画[J]. 运筹学学报, 2015, 19(1): 1-8. |
[8] | 夏远梅, 赵克全. 向量优化中\varepsilon-真有效解的非线性标量化性质[J]. 运筹学学报, 2014, 18(4): 58-64. |
[9] | 中国运筹学会数学规划分会. 中国数学规划学科发展概述[J]. 运筹学学报, 2014, 18(1): 1-8. |
[10] | 龚舒,龚循华. 向量均衡问题的超有效性的对偶形式[J]. 运筹学学报, 2013, 17(2): 107-123. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||