Operations Research Transactions ›› 2025, Vol. 29 ›› Issue (3): 243-266.doi: 10.15960/j.cnki.issn.1007-6093.2025.03.012
Special Issue: 第九届中国运筹学会科学技术奖获奖者专辑
• Research Article • Previous Articles
Chenglong BAO1,2,*(), Chang CHEN1,3
Received:
2025-03-31
Online:
2025-09-15
Published:
2025-09-09
Contact:
Chenglong BAO
E-mail:clbao@tsinghua.edu.cn
CLC Number:
Chenglong BAO, Chang CHEN. A survey on the Bregman iteration in computing Landau's free functional minimization problems[J]. Operations Research Transactions, 2025, 29(3): 243-266.
1 |
CowleyR A.Structural phase transitions Ⅰ. Landau theory[J].Advances in Physics,1980,29(1):1-110.
doi: 10.1080/00018738000101346 |
2 | GinzburgV L,LandauL D.Theory of superconductivity[J].Journal of Experimental and Theoretical Physics,1950,20(12) |
3 | LandauL D.On the theory of phase transitions[J].Journal of Experimental and Theoretical Physics,1937,11,19. |
4 | BrazovskiS A.Phase transition of an isotropic system to a nonuniform state[J].Soviet Journal of Experimental and Theoretical Physics,1975,41,85-89. |
5 |
CrossM C,HohenbergP C.Pattern formation outside of equilibrium[J].Reviews of Modern Physics,1993,65(3):851.
doi: 10.1103/RevModPhys.65.851 |
6 |
JiangK,SiW,XuJ.Tilt grain boundaries of hexagonal structures: A spectral viewpoint[J].SIAM Journal on Applied Mathematics,2022,82(4):1267-1286.
doi: 10.1137/21M1463288 |
7 | FredricksonG.The Equilibrium Theory of Inhomogeneous Polymers[M].Oxford:Oxford University Press,2005. |
8 |
MüllerM,AbetzV.Nonequilibrium processes in polymer membrane formation: Theory and experiment[J].Chemical Reviews,2021,121(22):14189-14231.
doi: 10.1021/acs.chemrev.1c00029 |
9 |
SavitzS,BabadiM,LifshitzR.Multiple-scale structures: from faraday waves to soft-matter quasicrystals[J].Journal of the International Union of Crystallography,2018,5(3):247-268.
doi: 10.1107/S2052252518001161 |
10 |
LifshitzR,PetrichD M.Theoretical model for faraday waves with multiple-frequency forcing[J].Physical Review Letters,1997,79(7):1261.
doi: 10.1103/PhysRevLett.79.1261 |
11 |
OhtaT,KawasakiK.Equilibrium morphology of block copolymer melts[J].Macromolecules,1986,19(10):2621-2632.
doi: 10.1021/ma00164a028 |
12 |
BaoC L,ChenC,JiangK,et al.Convergence analysis for Bregman iterations in minimizing a class of Landau free energy functionals[J].SIAM Journal on Numerical Analysis,2024,62(1):476-499.
doi: 10.1137/22M1517664 |
13 |
SialS,NeubergerJ,LookmanT,et al.Energy minimization using Sobolev gradients: Application to phase separation and ordering[J].Journal of Computational Physics,2003,189(1):88-97.
doi: 10.1016/S0021-9991(03)00202-X |
14 |
JiangK,SiW,ChenC,et al.Efficient numerical methods for computing the stationary states of phase field crystal models[J].SIAM Journal on Scientific Computing,2020,42(6):B1350-B1377.
doi: 10.1137/20M1321176 |
15 |
ZhangL,DuQ,ZhengZ Z.Optimization-based shrinking dimer method for finding transition states[J].SIAM Journal on Scientific Computing,2016,38(1):A528-A544.
doi: 10.1137/140972676 |
16 | Chaplin M. Water structure and science[EB/OL]. [2025-03-01]. https://water.lsbu.ac.uk/water/. |
17 |
AllenS M,Cahn.A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening[J].Acta Metallurgica,1979,27(6):1085-1095.
doi: 10.1016/0001-6160(79)90196-2 |
18 |
CahnJ W,HilliardJ E.Free energy of a nonuniform system. Ⅰ. Interfacial free energy[J].The Journal of Chemical Physics,1958,28(2):258-267.
doi: 10.1063/1.1744102 |
19 |
ShenJ,XuJ,YangJ.A new class of efficient and robust energy stable schemes for gradient flows[J].SIAM Review,2019,61(3):474-506.
doi: 10.1137/17M1150153 |
20 |
DuQ,JuL L,LiX,et al.Maximum bound principles for a class of semilinear parabolic equations and exponential time-differencing schemes[J].SIAM Review,2021,63(2):317-359.
doi: 10.1137/19M1243750 |
21 |
FukushimaM,MineH.A generalized proximal point algorithm for certain non-convex minimization problems[J].International Journal of Systems Science,1981,12(8):989-1000.
doi: 10.1080/00207728108963798 |
22 | CombettesP L,WajsV R.Signal recovery by proximal forward-backward splitting[J].Multiscale Modeling & Simulation,2005,4(4):1168-1200. |
23 |
BolteJ,SabachS,TeboulleM.Proximal alternating linearized minimization for nonconvex and nonsmooth problems[J].Mathematical Programming,2014,146(1-2):459-494.
doi: 10.1007/s10107-013-0701-9 |
24 |
ChenL Q,ShenJ.Applications of semi-implicit Fourier-spectral method to phase field equations[J].Computer Physics Communications,1998,108(2-3):147-158.
doi: 10.1016/S0010-4655(97)00115-X |
25 |
ShenJ,YangX F.Numerical approximations of Allen-Cahn and Cahn-Hilliard equations[J].Discrete and Continuous Dynamical Systems-A,2010,28(4):1669.
doi: 10.3934/dcds.2010.28.1669 |
26 |
BregmanL M.The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming[J].USSR Computational Mathematics and Mathematical Physics,1967,7(3):200-217.
doi: 10.1016/0041-5553(67)90040-7 |
27 | BauschkeH H,BolteJ,TeboulleM.A descent lemma beyond Lipschitz gradient continuity: First-order methods revisited and applications[J].Mathematics of Operations Research,2016,42(2):330-348. |
28 |
BolteJ,SabachS,TeboulleM,et al.First order methods beyond convexity and Lipschitz gradient continuity with applications to quadratic inverse problems[J].SIAM Journal on Optimization,2018,28(3):2131-2151.
doi: 10.1137/17M1138558 |
29 |
TeboulleM.A simplified view of first order methods for optimization[J].Mathematical Programming,2018,170(1):67-96.
doi: 10.1007/s10107-018-1284-2 |
30 | JiangK,ZhangP.Numerical methods for quasicrystals[J].Journal of Computational Physics,2014,256(1):428-440. |
31 | Li Q W, Zhu Z H, Tang G G, et al. Provable Bregman-divergence based methods for nonconvex and non-Lipschitz problems[EB/OL]. [2025-03-01]. arXiv: 1904.09712. |
32 |
BauschkeH H,BolteJ,TeboulleM.A descent lemma beyond Lipschitz gradient continuity: First-order methods revisited and applications[J].Mathematics of Operations Research,2017,42(2):330-348.
doi: 10.1287/moor.2016.0817 |
33 | NesterovY.Introductory Lectures on Convex Optimization: A Basic Course[M].New York:Springer Science & Business Media,2003. |
34 |
O'DonoghueB,CandesE.Adaptive restart for accelerated gradient schemes[J].Foundations of Computational Mathematics,2015,15(3):715-732.
doi: 10.1007/s10208-013-9150-3 |
35 |
BarzilaiJ,BorweinJ M.Two-point step size gradient methods[J].IMA Journal of Numerical Analysis,1988,8(1):141-148.
doi: 10.1093/imanum/8.1.141 |
36 | Bento G C, Mordukhovich B S, Mota T S, et al. Convergence of descent methods under Kurdyka-Łojasiewicz properties[EB/OL]. [2025-03-01]. arXiv: 2407.00812. |
37 |
BaoC L,ChenC,JiangK.An adaptive block Bregman proximal gradient method for computing stationary states of multicomponent phase-field crystal model[J].CSIAM Transactions on Applied Mathematics,2022,3,133-171.
doi: 10.4208/csiam-am.SO-2021-0002 |
38 |
YangX F.Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends[J].Journal of Computational Physics,2016,327,294-316.
doi: 10.1016/j.jcp.2016.09.029 |
39 |
ShenJ,XuJ,YangJ.The scalar auxiliary variable (SAV) approach for gradient flows[J].Journal of Computational Physics,2018,353,407-416.
doi: 10.1016/j.jcp.2017.10.021 |
40 | Hebey E. Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities[R]. Providence: American Mathematical Society, 2000. |
41 |
RoeJ.Elliptic operators, topology, and asymptotic methods[J].Acta Applicandae Mathematica,1990,20,193-194.
doi: 10.1007/BF00046916 |
42 |
RybkaP,HoffnlannK H.Convergence of solutions to Cahn-Hilliard equation[J].Communications in Partial Differential Equations,1999,24(5-6):1055-1077.
doi: 10.1080/03605309908821458 |
43 |
ChillP.On the Łojasiewicz-Simon gradient inequality[J].Journal of Functional Analysis,2003,201(2):572-601.
doi: 10.1016/S0022-1236(02)00102-7 |
44 | SimonL.Asymptotics for a class of non-linear evolution equations, with applications to geometric problems[J].Annals of Mathematics,1983,525-571. |
45 | Chill R. The Łojasiewicz-Simon gradient inequality in Hilbert spaces[C]//Proceedings of the 5th European-Maghrebian Workshop on Semigroup Theory, Evolution Equations, and Applications, 2006: 25-36. |
46 | FeireislE,PetzeltováH.Convergence to a ground state as a threshold phenomenon in nonlinear parabolic equations[J].Differential and Integral Equations,1997,10(1):181-196. |
47 |
BauschkeH H,BorweinJ M,CombettesP L.Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces[J].Communications in Contemporary Mathematics,2001,3(4):615-647.
doi: 10.1142/S0219199701000524 |
48 | Krichene W, Bayen A, Bartlett P L. Accelerated mirror descent in continuous and discrete time[C]// Proceedings of the 29th International Conference on Neural Information Processing Systems, 2015, 2: 2845-2853. |
49 | LiD,QuanC Y,TangT.Stability and convergence analysis for the implicit-explicit method to the Cahn-Hilliard equation[J].Mathematics of Computation,2022,91(334):785-809. |
50 |
FuZ H,TangT,YangJ.Energy plus maximum bound preserving Runge-Kutta methods for the Allen-Cahn equation[J].Journal of Scientific Computing,2022,92(3):97.
doi: 10.1007/s10915-022-01940-6 |
51 | Fu Z H, Tang T, Yang J. Energy diminishing implicit-explicit Runge-Kutta methods for gradient flows[EB/OL]. [2025-03-01]. arXiv: 2203.06034 |
52 |
ZhangH,WangH F,TengX Q.A second-order, global-in-time energy stable implicit-explicit Runge-Kutta scheme for the phase field crystal equation[J].SIAM Journal on Numerical Analysis,2024,62(6):2667-2697.
doi: 10.1137/24M1637623 |
53 | Wang X P, Zhao X, Liao H L. A unified framework on the original energy laws of three effective classes of Runge-Kutta methods for phase field crystal type models[EB/OL]. [2025-03-01]. arXiv: 2412.07342. |
[1] | Anwa ZHOU, Jiayi HE. Real pairwise completely positive matrices [J]. Operations Research Transactions, 2025, 29(3): 160-178. |
[2] | Shenglong HU. Uniqueness of tensor canonical polyadic decomposition [J]. Operations Research Transactions, 2025, 29(3): 34-60. |
[3] | Tiande GUO, Tianchi XING, Congying HAN, Shuai MENG. Generative methods in artificial intelligence: Mathematical models, optimization algorithms and applications [J]. Operations Research Transactions, 2025, 29(3): 1-33. |
[4] | Liuyang YUAN, Mengyao TANG, Xiaoni CHI. A new class of parameter-free filled tunnel function methods [J]. Operations Research Transactions, 2025, 29(2): 214-220. |
[5] | Yuru ZHANG, Xue ZHANG, Ru LAN. A variable metric extrapolation hard threshold algorithm for some linear inverse problem [J]. Operations Research Transactions, 2025, 29(2): 158-174. |
[6] | Suxia MA, Yuelin GAO, Hongwei LIN, Bo ZHANG. A new non parameter-filled function method for global optimization [J]. Operations Research Transactions, 2025, 29(2): 141-157. |
[7] | Xintian LIU, Wenxing ZHU. A discrete iterative method for hypergraph bananced bi-partitioning [J]. Operations Research Transactions, 2025, 29(2): 128-140. |
[8] | Siqi GUO, Ping ZHOU, Yiwei JIANG, Min JI. Single-machine scheduling with carbon emission cost and piece-rate maintenance [J]. Operations Research Transactions, 2025, 29(2): 68-79. |
[9] | Qiao CHEN, Huiling LIN. Gap functions and error bounds for generalized mixed quasi-variational inequalities [J]. Operations Research Transactions, 2025, 29(2): 44-57. |
[10] | Xianya GENG, Hui CHAI. Gallai's conjecture for complete bipartite graphs [J]. Operations Research Transactions, 2025, 29(1): 232-238. |
[11] | Xihong YAN, Xiaoni TANG. An inertial alternating direction method of multiplier for low rank matrix completion [J]. Operations Research Transactions, 2025, 29(1): 172-184. |
[12] | Shipian DU, Manzhan GU. Stochastic scheduling to minimize the expected total number of tardy jobs with machine maintenance activities [J]. Operations Research Transactions, 2025, 29(1): 142-158. |
[13] | Na LI, Ran MA, Long LI, Yuzhong ZHANG. Study on the production scheduling of prefabricated components with learning effect [J]. Operations Research Transactions, 2025, 29(1): 19-30. |
[14] | Chengwen JIAO. Online scheduling on a single parallel-batch machine with linear lookahead [J]. Operations Research Transactions, 2024, 28(4): 111-116. |
[15] | Dayong ZHANG, Honglei WANG. Optimization strategy for preventive maintenance of wind turbines in low wind speed areas based on Markov models [J]. Operations Research Transactions, 2024, 28(3): 108-120. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||