Operations Research Transactions ›› 2025, Vol. 29 ›› Issue (1): 142-158.doi: 10.15960/j.cnki.issn.1007-6093.2025.01.012
Previous Articles Next Articles
Received:
2021-12-24
Online:
2025-03-15
Published:
2025-03-08
Contact:
Manzhan GU
E-mail:gu.manzhan@mail.shufe.edu.cn
CLC Number:
Shipian DU, Manzhan GU. Stochastic scheduling to minimize the expected total number of tardy jobs with machine maintenance activities[J]. Operations Research Transactions, 2025, 29(1): 142-158.
1 | 唐恒永, 赵传立. 排序引论[M]. 北京: 科学出版社, 2002: 19- 36. |
2 |
Johnson S M . Optimal two and three stage production schedules with setup times included[J]. Naval Research Logistics Quarterly, 1954, 1 (1): 61- 68.
doi: 10.1002/nav.3800010110 |
3 |
Smith W E . Various optimizers for single-stage production[J]. Naval Research Logistics Quarterly, 1956, 3 (1-2): 59- 66.
doi: 10.1002/nav.3800030106 |
4 |
Jackson J R . An extension of Johnson's results on job IDT scheduling[J]. Naval Research Logistics Quarterly, 1956, 3 (3): 201- 203.
doi: 10.1002/nav.3800030307 |
5 |
Lee C Y . Machine scheduling with an availability constraint[J]. Journal of Global Optimization, 1996, 9 (3-4): 395- 416.
doi: 10.1007/BF00121681 |
6 |
Sanlaville E , Schmidt G . Machine scheduling with availability constraints[J]. Acta Informatica, 1998, 35 (9): 795- 811.
doi: 10.1007/s002360050143 |
7 |
Xu D , Yin Y , Li H . Scheduling jobs under increasing linear machine maintenance time[J]. Journal of Scheduling, 2010, 13 (4): 443- 449.
doi: 10.1007/s10951-010-0182-0 |
8 | Shi X , Xu D . Best possible approximation algorithms for single machine scheduling with increasing linear maintenance durations[J]. The Scientific World Journal, 2014, 2014, 1- 8. |
9 |
Xu Z , Xu D . Single-machine scheduling with preemptive jobs and workload-dependent maintenance durations[J]. Operational Research, 2015, 15 (3): 423- 436.
doi: 10.1007/s12351-015-0179-8 |
10 |
Xu Z , Xu D . Single-machine scheduling with workload-dependent tool change durations and equal processing time jobs to minimize total completion time[J]. Journal of Scheduling, 2018, 21 (4): 461- 482.
doi: 10.1007/s10951-017-0543-z |
11 | Xu D, Xu L, Xu Z. Single machine scheduling problem with a flexible maintenance revisited [C]// International Workshop on Frontiers in Algorithmics, 2020: 74-82. |
12 |
Pinedo M . Stochastic scheduling with release dates and due dates[J]. Operations Research, 1983, 31 (3): 559- 572.
doi: 10.1287/opre.31.3.559 |
13 |
Pinedo M , Rammouz E . A note on stochastic scheduling on a single machine subject to breakdown and repair[J]. Probability in the Engineering and Informational Sciences, 1988, 2 (1): 41- 49.
doi: 10.1017/S0269964800000619 |
14 |
Jia C . Stochastic single machine scheduling with an exponentially distributed due date[J]. Operations Research Letters, 2001, 28 (5): 199- 203.
doi: 10.1016/S0167-6377(01)00065-7 |
15 | Cai X , Wang L , Zhou X . Single-machine scheduling to stochastically minimize maximum lateness[J]. Journal of Scheduling, 2007, 10 (4): 293- 301. |
16 |
Wu X , Zhou X . Stochastic scheduling to minimize expected maximum lateness[J]. European Journal of Operational Research, 2008, 190 (1): 103- 115.
doi: 10.1016/j.ejor.2007.06.015 |
17 |
Ronconi D P , Powell W B . Minimizing total tardiness in a stochastic single machine scheduling problem using approximate dynamic programming[J]. Journal of Scheduling, 2010, 13 (6): 597- 607.
doi: 10.1007/s10951-009-0160-6 |
18 | Gu J , Gu M , Gu X . Optimal rules for single machine scheduling with stochastic breakdowns[J]. Mathematical Problems in Engineering, 2014, 2014 (3): 1- 9. |
19 |
Zhang L , Lin Y , Xiao Y , et al. Stochastic single-machine scheduling with random resource arrival times[J]. International Journal of Machine Learning and Cybernetics, 2018, 9 (7): 1101- 1107.
doi: 10.1007/s13042-016-0631-y |
20 |
Gu J , Gu M , Lu X , et al. Asymptotically optimal policy for stochastic job shop scheduling problem to minimize makespan[J]. Journal of Combinatorial Optimization, 2018, 36 (1): 142- 161.
doi: 10.1007/s10878-018-0294-6 |
21 |
Liu M , Liu X . Machine scheduling with stochastic release and processing times[J]. IFAC-PapersOnLine, 2019, 52 (13): 2116- 2121.
doi: 10.1016/j.ifacol.2019.11.518 |
22 |
Wei W . Single machine scheduling with stochastically dependent times[J]. Journal of Scheduling, 2019, 22 (6): 677- 689.
doi: 10.1007/s10951-019-00600-2 |
23 | Buchem M , Vredeveld T . Performance analysis of fixed assignment policies for stochastic online scheduling on uniform parallel machines[J]. Computers Operations Research, 2021, 125 (1): 1- 16. |
[1] | Xihong YAN, Xiaoni TANG. An inertial alternating direction method of multiplier for low rank matrix completion [J]. Operations Research Transactions, 2025, 29(1): 172-184. |
[2] | Na LI, Ran MA, Long LI, Yuzhong ZHANG. Study on the production scheduling of prefabricated components with learning effect [J]. Operations Research Transactions, 2025, 29(1): 19-30. |
[3] | GENG Xianya, CHAI Hui. Gallai's conjecture for complete bipartite graphs [J]. Operations Research Transactions, 2025, 29(1): 232-238. |
[4] | Chengwen JIAO. Online scheduling on a single parallel-batch machine with linear lookahead [J]. Operations Research Transactions, 2024, 28(4): 111-116. |
[5] | Dayong ZHANG, Honglei WANG. Optimization strategy for preventive maintenance of wind turbines in low wind speed areas based on Markov models [J]. Operations Research Transactions, 2024, 28(3): 108-120. |
[6] | Fusheng WANG, Luyu SHI. An accelerated proximal stochastic gradient method with variance reduction based on Polyak step size [J]. Operations Research Transactions, 2024, 28(2): 131-142. |
[7] | Minglu YE, Ming HUANG. An inertial projection algorithm for nonmonotone continuous variational inequalities [J]. Operations Research Transactions, 2024, 28(2): 81-92. |
[8] | Juannian XU, Ran MA, Wenwen HAN, Yuzhong ZHANG. Single-machine online scheduling to minimize maximum weighted completion time with limited weights [J]. Operations Research Transactions, 2024, 28(2): 71-80. |
[9] | Jiaqi ZHANG, Jueyou LI. A class of differential privacy stochastic gradient descent algorithm with adaptive gradient clipping [J]. Operations Research Transactions, 2024, 28(2): 47-57. |
[10] | Yukun CHENG, Xin HAN, Xiuyang CHEN, Zhao ZHANG. Survey on several combinatorial optimization games on networks [J]. Operations Research Transactions, 2024, 28(2): 1-29. |
[11] | Xuezheng LYU, Mengyu MA. The distance spectra of chain graphs [J]. Operations Research Transactions, 2024, 28(1): 112-120. |
[12] | Fusheng BAI, Mi LAN. An adaptive surrogate optimization method for expensive black-box problems with hidden constraints [J]. Operations Research Transactions, 2024, 28(1): 89-100. |
[13] | Yinghan LI, Xiaojiao TONG, Liu YANG. The study of distributionally robust reward-risk optimization models with moment-based ambiguity set [J]. Operations Research Transactions, 2024, 28(1): 77-88. |
[14] | Yang XU, Junlin WANG, Zi XU. A mirror descent gradient ascent algorithm for one side relatively smooth nonconvex-concave minimax optimization problems [J]. Operations Research Transactions, 2024, 28(1): 18-28. |
[15] | Xinqing MENG, Wenxing ZAHNG. An accelerated method for solving a class of linear equality constrained convex optimization [J]. Operations Research Transactions, 2024, 28(1): 1-17. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||