Operations Research Transactions ›› 2025, Vol. 29 ›› Issue (1): 172-184.doi: 10.15960/j.cnki.issn.1007-6093.2025.01.014
Previous Articles Next Articles
Received:
2022-09-28
Online:
2025-03-15
Published:
2025-03-08
Contact:
Xihong YAN
E-mail:xihong1@e.ntu.edu.sg
CLC Number:
Xihong YAN, Xiaoni TANG. An inertial alternating direction method of multiplier for low rank matrix completion[J]. Operations Research Transactions, 2025, 29(1): 172-184.
"
算法 | iter | error1 | error2 | |||
2 000 | 10 | ADMM | 44 | 6.438 4 | ||
IADM | 38 | 5.114 7 | ||||
SVT | 125 | 46.202 | ||||
2 000 | 20 | ADMM | 42 | 7.416 2 | ||
IADM | 37 | 6.852 1 | ||||
SVT | 148 | 72.547 | ||||
4 000 | 10 | ADMM | 45 | 23.203 | ||
IADM | 40 | 21.664 | ||||
SVT | 107 | 122.32 | ||||
4 000 | 20 | ADMM | 44 | 31.829 | ||
IADM | 38 | 28.120 | ||||
SVT | 122 | 233.68 | ||||
6 000 | 10 | ADMM | 45 | 55.862 | ||
IADM | 40 | 51.549 | ||||
SVT | 102 | 270.53 | ||||
6 000 | 20 | ADMM | 33 | 57.254 | ||
IADM | 28 | 50.656 | ||||
SVT | 112 | 471.71 | ||||
8 000 | 10 | ADMM | 45 | 94.967 | ||
IADM | 40 | 89.766 | ||||
SVT | 96 | 461.39 | ||||
8 000 | 20 | ADMM | 33 | 99.171 | ||
IADM | 28 | 87.192 | ||||
SVT | 107 | 761.11 | ||||
10 000 | 10 | ADMM | 45 | 194.87 | ||
IADM | 41 | 183.78 | ||||
SVT | 94 | 740.69 | ||||
10 000 | 20 | ADMM | 45 | 189.72 | ||
IADM | 40 | 174.70 | ||||
SVT | 103 | 1 168.2 |
"
算法 | iter | error1 | error2 | |||
2 000 | 10 | ADMM | 31 | 4.098 3 | ||
IADM | 28 | 4.069 7 | ||||
SVT | 115 | 30.287 | ||||
2 000 | 20 | ADMM | 31 | 5.875 4 | ||
IADM | 28 | 6.050 2 | ||||
SVT | 131 | 61.228 | ||||
4 000 | 10 | ADMM | 33 | 16.898 | ||
IADM | 28 | 14.897 | ||||
SVT | 101 | 118.28 | ||||
4 000 | 20 | ADMM | 31 | 24.831 | ||
IADM | 28 | 23.602 | ||||
SVT | 112 | 205.16 | ||||
6 000 | 10 | ADMM | 33 | 39.655 | ||
IADM | 28 | 35.408 | ||||
SVT | 94 | 221.87 | ||||
6 000 | 20 | ADMM | 33 | 57.254 | ||
IADM | 28 | 50.656 | ||||
SVT | 104 | 412.31 | ||||
8 000 | 10 | ADMM | 33 | 72.204 | ||
IADM | 28 | 62.125 | ||||
SVT | 92 | 347.45 | ||||
8 000 | 20 | ADMM | 33 | 99.171 | ||
IADM | 28 | 87.192 | ||||
SVT | 100 | 677.45 | ||||
10 000 | 10 | ADMM | 33 | 137.96 | ||
IADM | 28 | 125.39 | ||||
SVT | 89 | 560.32 | ||||
10 000 | 20 | ADMM | 33 | 138.61 | ||
IADM | 28 | 120.99 | ||||
SVT | 98 | 1 016.8 |
"
算法 | iter | error1 | error2 | |||
2 000 | 10 | ADMM | 24 | 3.280 0 | ||
IADM | 21 | 3.002 6 | ||||
SVT | 106 | 27.883 | ||||
2 000 | 20 | ADMM | 24 | 4.680 1 | ||
IADM | 21 | 4.614 1 | ||||
SVT | 120 | 57.562 | ||||
4 000 | 10 | ADMM | 25 | 12.592 | ||
IADM | 21 | 10.984 | ||||
SVT | 95 | 91.283 | ||||
4 000 | 20 | ADMM | 24 | 19.381 | ||
IADM | 21 | 17.361 | ||||
SVT | 106 | 186.15 | ||||
6 000 | 10 | ADMM | 26 | 31.701 | ||
IADM | 21 | 26.698 | ||||
SVT | 91 | 163.39 | ||||
6 000 | 20 | ADMM | 24 | 19.381 | ||
IADM | 21 | 17.361 | ||||
SVT | 99 | 476.83 | ||||
8 000 | 10 | ADMM | 26 | 54.558 | ||
IADM | 21 | 44.425 | ||||
SVT | 87 | 287.02 | ||||
8 000 | 20 | ADMM | 26 | 76.760 | ||
IADM | 21 | 64.043 | ||||
SVT | 96 | 513.93 | ||||
10 000 | 10 | ADMM | 26 | 105.34 | ||
IADM | 21 | 90.048 | ||||
SVT | 86 | 468.19 | ||||
10 000 | 20 | ADMM | 26 | 103.49 | ||
IADM | 21 | 86.656 | ||||
SVT | 93 | 748.99 |
"
像素 | 算法 | iter | error1 | PSNR | ||
256*256 | 0.4 | IADM | 222 | 1.964 8 | 25.795 5 | |
SVT | 987 | 10.758 | 2.170 7 | |||
256*256 | 0.6 | IADM | 215 | 1.867 9 | 29.620 8 | |
SVT | 952 | 8.517 6 | 3.976 8 | |||
256*256 | 0.8 | IADM | 99 | 0.849 1 | 32.569 4 | |
SVT | 924 | 8.901 3 | 6.984 0 | |||
512*512 | 0.4 | IADM | 401 | 17.150 1 | 21.817 6 | |
SVT | 945 | 51.200 | 2.139 3 | |||
512*512 | 0.6 | IADM | 383 | 16.275 1 | 25.775 7 | |
SVT | 574 | 26.014 | 3.982 2 | |||
512*512 | 0.8 | IADM | 352 | 14.782 7 | 30.185 0 | |
SVT | 982 | 44.055 | 6.979 1 |
1 |
Candès E J , Plan Y . Matrix completion with noise[J]. Proceedings of the IEEE, 2010, 98 (6): 925- 936.
doi: 10.1109/JPROC.2009.2035722 |
2 |
Spyromitros-xioufis E , Tsoumakas G , Groves W , et al. Multi-target regression via input space expansion: Treating targets as inputs[J]. Machine Learning, 2016, 104 (1): 55- 98.
doi: 10.1007/s10994-016-5546-z |
3 | Hayashi N , Watanabe S . Upper bound of bayesian generalization error in non-negative matrix factorization[J]. Neurocomputing, 2017, 266 (29): 21- 28. |
4 |
Xue H Y , Zhang S M , Cai D . Depth image inpainting: Improving low rank matrix completion with low gradient regularization[J]. IEEE Transactions on Image Processing, 2017, 26 (9): 4311- 4320.
doi: 10.1109/TIP.2017.2718183 |
5 |
Candès E J , Recht B . Exact matrix completion via convex optimization[J]. Foundations of Computational Mathematics, 2009, 9 (6): 717- 772.
doi: 10.1007/s10208-009-9045-5 |
6 |
Cai J F , Candès E J , Shen Z W . A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization, 2010, 20 (4): 1956- 1982.
doi: 10.1137/080738970 |
7 | Lin Z C, Chen M M, Ma Y. The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices [R]. Champaign: Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, 2009. |
8 | Chen C H , He B S , Yuan X M . Matrix completion via an alternating direction method[J]. IMA Journal of Numerical Analysis, 2011, 32 (1): 227- 245. |
9 | He B S , Xu M H , Yuan X M . Solving large-scale least squares semidefinite programming by alternating direction methods[J]. SIAM Journal on Matrix Analysis and Applications, 2009, 32 (1): 136- 152. |
10 | Ng M K , Weiss P , Yuan X M . Solving constrained total-variation image restoration and reconstruction problems via alternating direction methods[J]. SIAM Journal on Scientific Computing, 2009, 32 (5): 2710- 2736. |
11 | 闫喜红, 王川龙, 李超, 等. 求解低秩矩阵恢复问题的非单调交替梯度方向法[J]. 中国科学: 数学, 2021, 51 (4): 549- 560. |
12 | Yang J F , Zhang Y . Alternating direction algorithms for 11-problems in compressive sensing[J]. SIAM Journal on Scientific Computing, 2009, 33 (1): 250- 278. |
13 |
Ochs P , Chen Y J , Brox T , et al. iPiano: Inertial proximal algorithm for nonconvex optimization[J]. SIAM Journal on Imaging Sciences, 2014, 7 (2): 1388- 1419.
doi: 10.1137/130942954 |
14 | Polyak B T . Some methods of speeding up the convergence of iteration methods[J]. USSR Computational Mathematics and Mathematical Physics, 1964, 5 (4): 1- 17. |
15 | Lorenz D A , Pock T . An inertial forward-backward algorithm for monotone inclusions[J]. Journal of Mathematical Imaging and Vision, 2015, 51 (2): 311- 325. |
16 | Ochs P , Brox T , Pock T . iPiasco: Inertial proximal algorithm for strongly convex optimization[J]. Journal of Mathematical Imaging and Vision, 2015, 53 (2): 171- 181. |
17 | Bot R I , Csetnek E R , Hendrich C . Inertial douglas-rachford splitting for monotone inclusion problems[J]. Applied Mathematics and Computation, 2015, 256, 472- 487. |
18 | Bot R I, Csetnek E R. An inertial alternating direction method of multipliers [EB/OL]. (2014-04-17)[2022-08-28]. arXiv: 1404.4582. |
19 | Chen C H , Ma S Q , Yang J F . A general inertial proximal point algorithm for mixed variational inequality problem[J]. SIAM Journal on Optimization, 2015, 25 (4): 2120- 2142. |
20 | Chen C H , Chan R H , Ma S Q , et al. Inertial proximal ADMM for linearly constrained separable convex optimization[J]. SIAM Journal on Imaging Sciences, 2015, 8 (4): 2239- 2267. |
21 | Golub G H , Van Loan C F . Matrix Computations[M]. Baltimore: Johns Hopkins University Press, 1996. |
22 | He B S , Ma F , Xu S J , et al. A generalized primal-dual algorithm with improved convergence condition for saddle point problems[J]. SIAM Journal on Imaging Sciences, 2022, 15 (3): 1157- 1183. |
23 | Beck A . First-Order Methods in Optimization[M]. Philadelphia: Society for Industrial and Applied Mathematics, 2017. |
[1] | Xinqing MENG, Wenxing ZAHNG. An accelerated method for solving a class of linear equality constrained convex optimization [J]. Operations Research Transactions, 2024, 28(1): 1-17. |
[2] | Jianwen PENG, Hongwang LEI. A class of inertial symmetric regularization alternating direction method of multipliers for nonconvex two-block optimization [J]. Operations Research Transactions, 2023, 27(3): 37-52. |
[3] | Maoran WANG, Xingju CAI, Zhongming WU, Deren HAN. First-order splitting algorithm for multi-model traffic equilibrium problems [J]. Operations Research Transactions, 2023, 27(2): 63-78. |
[4] | Wenhui XIE, Chen LING, Chenjian PAN. A tensor completion method based on tensor train decomposition and its application in image restoration [J]. Operations Research Transactions, 2022, 26(3): 31-43. |
[5] | WANG Shuangyue, LUO Ziyan. Low rank support tensor machine based on L0/1 soft-margin loss function [J]. Operations Research Transactions, 2021, 25(3): 160-172. |
[6] | LI Chaoqiong, LI Feng. A partial parallel splitting LQP alternating direction method of multipliers for solving monotone variational inequalities [J]. Operations Research Transactions, 2020, 24(1): 101-114. |
[7] | JIAN Jinbao, LAO Yixian, CHAO Miantao, MA Guodong. ADMM-SQP algorithm for two blocks linear constrained nonconvex optimization [J]. Operations Research Transactions, 2018, 22(2): 79-92. |
[8] | YANG Junfeng. An algorithmic review for total variation regularized data fitting problems in image processing [J]. Operations Research Transactions, 2017, 21(4): 69-83. |
[9] | WAN Rui, XU Zi. On the linear convergence of the general alternating proximal gradient method for convex minimization [J]. Operations Research Transactions, 2014, 18(3): 1-12. |
[10] | DAI Yuhong, LIU Xinwei. Advances in linear and nonlinear programming [J]. Operations Research Transactions, 2014, 18(1): 69-92. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||