Operations Research Transactions ›› 2025, Vol. 29 ›› Issue (3): 1-33.doi: 10.15960/j.cnki.issn.1007-6093.2025.03.001
Special Issue: 第九届中国运筹学会科学技术奖获奖者专辑
• Research Article • Previous Articles Next Articles
Tiande GUO1, Tianchi XING1, Congying HAN1,*(), Shuai MENG1
Received:
2025-04-21
Online:
2025-09-15
Published:
2025-09-09
Contact:
Congying HAN
E-mail:hancy@ucas.ac.cn
CLC Number:
Tiande GUO, Tianchi XING, Congying HAN, Shuai MENG. Generative methods in artificial intelligence: Mathematical models, optimization algorithms and applications[J]. Operations Research Transactions, 2025, 29(3): 1-33.
15 | Liu Z W , Li M Q , Han C Y , et al. STDNet: Rethinking disentanglement learning with information theory[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 8 (35): 10407- 10421. |
16 | Zhang Z C, Liu Y L, Han C Y, et al. PetsGAN: Rethinking priors for single image generation [C]//The Thirty-Sixth AAAI Conference on Artificial Intelligence, 2022: 3408-3416. |
17 | Zhang Z C, Liu Y L, Han C Y, et al. Generalized one-shot domain adaptation of generative adversarial networks [C]//The 36th Conference on Neural Information Processing Systems, 2022, (35): 13718-13730. |
18 | Zhang Z C, Li B N, Nie X C, et al. Towards consistent video editing with text-to-image diffusion models [C]//The 37th Conference on Neural Information Processing Systems, 2023, (36): 58508-58519. |
19 | Zhang Z C, Liu Y L, Han C Y, et al. Transforming radiance field with Lipschitz network for photorealistic 3D scene stylization [C]//IEEE Conference on Computer Vision and Pattern Recognition, 2023: 20712-20721. |
20 | Villani C . Optimal Transport: Old and New[M]. Cham: Springer, 2009. |
21 | Ho J, Salimans T. Classifier-free diffusion guidance [EB/OL]. [2025-02-27]. arXiv: 2207.12598. |
22 | 郭田徳, 李安琪, 韩丛英. 组合优化问题的机器学习求解方法[J]. 中国科学: 数学, 2025, 55 (2): 451- 480. |
23 | Liu W Z, Han C Y, Guo T D, et al. Fusion of multi-level information: Solve large-scale traveling salesman problem with an efficient framework [C]//31st International Conference on Neural Information Processing, 2025: 89-103. |
24 | Li A Q , Guo T D , Han C Y , et al. On the optimal pivot path of simplex method for linear programming based on reinforcement learning[J]. SCIENCE CHINA Mathematics. Special Issue on AI Methods for Optimization Problems, 2024, 6 (67): 1263- 1286. |
25 | Shi Y C , Han C Y , Guo T D . NeuroPrim: An attention-based model for solving NP-hard spanning tree problems[J]. SCIENCE CHINA Mathematics, 2024, 6 (67): 1359- 1376. |
26 | Wang C G, Yang Y D, Slumbers O, et al. A game-theoretic approach for improving generalization ability of TSP solvers [C]//ICLR Workshop on Gamification and Multiagent Solutions, 2022. |
27 | Graikos A , Malkin N , Jojic N , et al. Diffusion models as plug-and-play priors[J]. Advances in Neural Information Processing Systems, 2022, 35, 14715- 14728. |
28 | Sun Z , Yang Y . DIFUSCO: Graph-based diffusion solvers for combinatorial optimization[J]. Advances in Neural Information Processing Systems, 2023, 36, 3706- 3731. |
29 | Zhao H, Yu K X, Huang Y H, et al. DISCO: Efficient diffusion solver for large-scale combinatorial optimization problems [EB/OL]. [2025-02-27]. arXiv: 2406.19705. |
30 | Polu S, Sutskever I. Generative language modeling for automated theorem proving [EB/OL]. [2025-02-27]. arXiv: 2009.03393. |
31 | Wang M , Deng J . Learning to prove theorems by learning to generate theorems[J]. Advances in Neural Information Processing Systems, 2020, 33, 18146- 18157. |
32 | Lin Y, Tang S, Lyu B, et al. Goedel-Prover: A frontier model for open-source automated theorem proving [EB/OL]. [2025-02-27]. arXiv: 2502.07640. |
33 | Simonovsky M, Komodakis N. GraphVAE: Towards generation of small graphs using variational autoencoders [EB/OL]. [2025-02-27]. arXiv: 1802.03480. |
34 | Bojchevski A, Shchur O, Zugner D, et al. NetGAN: Generating graphs via random walks [C]//International Conference on Machine Learning, 2018: 610-619. |
35 | Luo T , Mo Z , Pan S J . Fast graph generation via spectral diffusion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46, 3496- 3508. |
36 | Cao N D, Kipf T. MolGAN: An implicit generative model for small molecular graphs [EB/OL]. [2025-02-27]. arXiv: 1805.11973. |
37 | Xu M, Yu L, Song Y, et al. GeoDiff: A geometric diffusion model for molecular conformation generation [C]//10th International Conference on Learning Representations, 2022. |
38 | Ingraham J B , Baranov M , Costello Z , et al. Illuminating protein space with a programmable generative model[J]. Nature, 2023, 623, 1070- 1078. |
39 | Amirrajab S , Lorenz C , Weese J , et al. Pathology synthesis of 3D-consistent cardiac MR images using 2D VAEs and GANs[J]. Machine Learning for Biomedical Imaging, 2023, 2, 288- 311. |
1 | Kingma D P, Welling M. Auto-encoding variational bayes [C]//2nd International Conference on Learning Representations, 2014. |
2 | Higgins I, Matthey L, Pal A, et al. Beta-VAE: Learning basic visual concepts with a constrained variational framework [C]//5th International Conference on Learning Representations, 2017. |
3 | Van Den Oord A , Vinyals O , Kavukcuoglu K . Neural discrete representation learning[J]. Advances in Neural Information Processing Systems, 2017, 30, 6309- 6318. |
4 | Zhao S, Song J, Ermon S. InfoVAE: Information maximizing variational autoencoders [EB/OL]. [2025-02-27]. arXiv: 1706.02262. |
5 | Goodfellow I J , Pouget-Abadie J , Mirza M , et al. Generative adversarial nets[J]. Advances in Neural Information Processing Systems, 2014, 2, 2672- 2680. |
6 | Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks [C]//4th International Conference on Learning Representations, 2016. |
7 | Arjovsky M, Chintala S, Bottou L. Wasserstein generative adversarial networks [C]//34th International Conference on Machine Learning, 2017: 214-223. |
8 | Ho J , Jain A , Abbeel P . Denoising diffusion probabilistic models[J]. Advances in Neural Information Processing Systems, 2020, 6840- 6851. |
9 | Nichol A Q, Dhariwal P. Improved denoising diffusion probabilistic models [C]//Proceedings of the 38th International Conference on Machine Learning, 2021. |
10 | Dhariwal P , Nichol A . Diffusion models beat GANs on image synthesis[J]. Advances in Neural Information Processing Systems, 2021, 8780- 8794. |
11 | Song J, Meng C, Ermon S. Denoising diffusion implicit models [C]//9th International Conference on Learning Representations, 2021. |
12 | Dinh L, Krueger D, Bengio Y. NICE: Non-linear independent components estimation [EB/OL]. [2025-02-27]. arXiv: 1410.8516. |
40 | Corso G, Stärk H, Jing B, et al. DiffDock: Diffusion steps, twists, and turns for molecular docking [C]//11th International Conference on Learning Representations, 2023. |
41 | Paganini M, de Oliveira L, Nachman B. CaloGAN: Simulating 3D high energy particle showers in multi-layer electromagnetic calorimeters with generative adversarial networks [EB/OL]. [2025-02-27]. arXiv: 1712.10321. |
42 | Panos B , Kleint L , Voloshynovskiy S . Exploring mutual information between IRIS spectral lines. I. Correlations between spectral lines during solar flares and within the quiet Sun[J]. The Astrophysical Journal, 2021, 912, 121. |
43 | Cai M X, Lee K L K. $\rho$-Diffusion: A diffusion-based density estimation framework for computational physics [EB/OL]. [2025-02-27]. arXiv: 2312.08153. |
44 | Nichol A Q, Dhariwal P, Ramesh A, et al. GLIDE: Towards photorealistic image generation and editing with text-guided diffusion models [C]//International Conference on Machine Learning, 2022. |
45 | Ramesh A, Dhariwal P, Nichol A Q, et al. Hierarchical text-conditional image generation with CLIP latents [EB/OL]. [2025-02-27]. arXiv: 2204.06125. |
46 | Saharia C , Chan W , Saxena S , et al. Photorealistic text-to-image diffusion models with deep language understanding[J]. Advances in Neural Information Processing Systems, 2022, 35, 36479- 36494. |
47 | Rombach R, Blattmann A, Lorenz D, et al. High-resolution image synthesis with latent diffusion models [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 10684-10695. |
48 | Wu J , Zhang C , Xue T , et al. Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling[J]. Advances in Neural Information Processing Systems, 2016, 82- 90. |
49 | Groueix T, Fisher M, Kim V G, et al. AtlasNet: A Papier-Mâché approach to learning 3D surface generation [EB/OL]. [2025-02-27]. arXiv: 1802.05384. |
50 | Poole B, Jain A, Barron J T, et al. DreamFusion: Text-to-3D using 2D diffusion [C]//The 11th International Conference on Learning Representations, 2023. |
51 | Mildenhall B , Srinivasan P P , Tancik M , et al. NeRF: Representing scenes as neural radiance fields for view synthesis[J]. Communications of the ACM, 2021, 65, 99- 106. |
52 | Shi Y, Wang P, Ye J, et al. MVDream: Multi-view diffusion for 3D generation [EB/OL]. [2025-02-27]. arXiv: 2308.16512. |
53 | Tulyakov S, Liu M Y, Yang X, et al. MoCoGAN: Decomposing motion and content for video generation [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 1526-1535. |
54 | Ho J , Salimans T , Gritsenko A , et al. Video diffusion models[J]. Advances in Neural Information Processing Systems, 2022, 35, 8633- 8646. |
55 | Donahue C, McAuley J, Puckette M. Adversarial audio synthesis [C]//7th International Conference on Learning Representations, 2019. |
56 | Kumar K , Kumar R , De Boissiere T , et al. MelGAN: Generative adversarial networks for conditional waveform synthesis[J]. Advances in Neural Information Processing Systems, 2019, 14910- 14921. |
57 | Roberts A, Engel J, Raffel C, et al. A hierarchical latent vector model for learning long-term structure in music [C]//International Conference on Machine Learning, 2018: 4364-4373. |
58 | Phung H, Dao Q, Tran A. Wavelet diffusion models are fast and scalable image generators [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 10199-10208. |
59 | Prenger R, Valle R, Catanzaro B. WaveGlow: A flow-based generative network for speech synthesis [C]//ICASSP, 2019: 3617-3621. |
60 | Yu L, Zhang W, Wang J, et al. SeqGAN: Sequence generative adversarial nets with policy gradient [C]//AAAI Conference on Artificial Intelligence, 2017, 31(1). |
61 | Bowman S R, Vilnis L, Vinyals O, et al. Generating sentences from a continuous space [C]//Proceedings of the 20th SIGNLL Conference on Computational Natural Language Learning, 2016. |
62 | Gong S, Li M, Feng J, et al. DiffuSeq: Sequence to sequence text generation with diffusion models [C]//The 11th International Conference on Learning Representations, 2023. |
63 | Yuan H, Yuan Z, Tan C, et al. SeqDiffuSeq: Text diffusion with encoder-decoder transformers [EB/OL]. [2025-02-27]. arXiv: 2212.10325. |
13 | Dinh L, Sohl-Dickstein J, Bengio S. Density estimation using real NVP [C]//5th International Conference on Learning Representations, 2017. |
14 | Kingma D P , Dhariwal P . Glow: Generative flow with invertible $1\times 1$ convolutions[J]. Advances in Neural Information Processing Systems, 2018, 10236- 10245. |
64 | Strudel R, Tallec C, Altché F, et al. Self-conditioned embedding diffusion for text generation [EB/OL]. [2025-02-27]. arXiv: 2211.04236. |
65 | Reid M, Hellendoorn V J, Neubig G. Diffuser: Discrete diffusion via edit-based reconstruction [EB/OL]. [2025-02-27]. arXiv: 2210.16886. |
66 | He Z F, Sun T X, Tang Q, et al. DiffusionBERT: Improving generative masked language models with diffusion models [C]//Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics, 2023. |
67 | Ha D, Schmidhuber J. World models [EB/OL]. [2025-02-27]. arXiv: 1803.10122. |
68 | Chen J Y, Ganguly B, Xu Y, et al. Deep generative models for offline policy learning: Tutorial, survey, and perspectives on future directions [EB/OL]. [2025-02-27]. arXiv: 2402.13777. |
69 | Hu J, Sun Y, Huang S, et al. Instructed diffuser with temporal condition guidance for offline reinforcement learning [EB/OL]. [2025-02-27]. arXiv: 2306.04875. |
[1] | Shengxue HE. Transit vehicle scheduling model and 3M evolutionary algorithm based on super spatiotemporal network [J]. Operations Research Transactions, 2023, 27(3): 68-82. |
[2] | Yindong SHEN, Zhuang QIAN, Yuanyuan LI. A survey on driver scheduling in public transportation [J]. Operations Research Transactions, 2021, 25(1): 1-16. |
[3] | The Operational Research Society of China. Research report on the development of operations research in China [J]. Operations Research Transactions, 2012, 16(3): 1-48. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||