Operations Research Transactions ›› 2021, Vol. 25 ›› Issue (1): 50-60.doi: 10.15960/j.cnki.issn.1007-6093.2021.01.004
Previous Articles Next Articles
Received:
2019-06-03
Online:
2021-03-15
Published:
2021-03-05
Contact:
Hai YU
E-mail:yuhai2000@126.com
CLC Number:
Hai YU, Wanrong ZHAN. Strongly convergent ball-relaxed CQ algorithm and its application[J]. Operations Research Transactions, 2021, 25(1): 50-60.
"
A1 | A2 | A1 | A2 | ||||||||||
iter | cpu/s | iter | cpu/s | iter | cpu/s | iter | cpu/s | ||||||
0 | 2 | 84 | 0.493 3 | 79 | 0.197 9 | 2 | 94 | 0.549 6 | 102 | 0.258 7 | |||
0 | 5 | 155 | 0.892 7 | 161 | 0.390 6 | 5 | 175 | 0.982 9 | 199 | 0.477 6 | |||
0 | 10 | 215 | 1.212 6 | 213 | 0.537 9 | 10 | 240 | 1.332 9 | 249 | 0.605 6 | |||
0 | 50 | 311 | 1.746 6 | 436 | 1.044 2 | 50 | 343 | 1.911 4 | 475 | 1.132 9 | |||
2 | 106 | 0.627 3 | 129 | 0.312 1 | 2 | 131 | 0.773 5 | 189 | 0.491 1 | ||||
5 | 195 | 1.084 1 | 239 | 0.571 8 | 5 | 236 | 1.311 8 | 303 | 0.749 0 | ||||
10 | 265 | 1.476 2 | 284 | 0.718 1 | 10 | 310 | 1.723 1 | 336 | 0.825 1 | ||||
50 | 372 | 2.075 5 | 523 | 1.244 5 | 50 | 410 | 2.296 4 | 658 | 1.541 0 |
"
A1 | A2 | A1 | A2 | ||||||||||
iter | cpu/s | iter | cpu/s | iter | cpu/s | iter | cpu/s | ||||||
0 | 2 | 269 | 1.489 4 | 161 | 0.397 9 | 2 | 336 | 1.873 9 | 242 | 0.600 8 | |||
0 | 5 | 567 | 3.104 6 | 394 | 0.911 5 | 5 | 713 | 3.957 9 | 615 | 1.439 6 | |||
0 | 10 | 912 | 4.940 6 | 705 | 1.638 6 | 10 | 1 149 | 6.153 3 | 1 063 | 2.466 4 | |||
0 | 50 | 1 857 | 10.002 2 | 1 825 | 4.271 1 | 50 | 2 321 | 12.314 0 | 2 260 | 5.249 2 | |||
2 | 417 | 2.326 4 | 379 | 0.890 9 | 2 | 668 | 3.750 4 | 923 | 2.160 6 | ||||
5 | 887 | 4.778 6 | 974 | 2.275 4 | 5 | 1 385 | 7.407 3 | 2 096 | 4.860 6 | ||||
10 | 1 420 | 7.625 3 | 1 583 | 3.685 4 | 10 | 2 110 | 11.378 7 | 2 805 | 6.506 7 | ||||
50 | 2 791 | 14.787 8 | 2 758 | 6.397 3 | 50 | 3 628 | 19.288 2 | 3 832 | 8.895 9 |
"
A1 | A2 | A1 | A2 | ||||||||||
iter | cpu/s | iter | cpu/s | iter | cpu/s | iter | cpu/s | ||||||
0 | 2 | 700 | 3.819 2 | 269 | 0.638 2 | 2 | 990 | 5.449 5 | 426 | 0.995 8 | |||
0 | 5 | 1 567 | 8.520 6 | 674 | 1.562 8 | 5 | 2 261 | 12.148 7 | 1 148 | 2.666 1 | |||
0 | 10 | 2 754 | 14.776 1 | 1 338 | 3.093 5 | 10 | 4 031 | 21.511 3 | 236 3 | 5.506 7 | |||
0 | 50 | 7 807 | 41.516 6 | 5 776 | 13.365 6 | 50 | 1 1707 | 62.032 6 | 9 298 | 21.547 4 | |||
2 | 1 362 | 7.345 6 | 747 | 1.742 3 | 2 | 2 809 | 14.743 2 | 2 895 | 6.682 9 | ||||
5 | 3 141 | 16.843 6 | 2 182 | 5.069 9 | 5 | 6 443 | 34.464 1 | 8 865 | 20.602 0 | ||||
10 | 5 620 | 29.412 6 | 4 582 | 10.652 6 | 10 | 11 156 | 58.522 5 | 16 660 | 38.647 4 | ||||
50 | 16 174 | 86.554 5 | 15 110 | 34.959 0 | 50 | 27 381 | 143.962 4 | 29 754 | 69.398 2 |
1 |
Censor Y , Elfving T . A multiprojection algorithm using Bregman projections in product space[J]. Numerical Algorithms, 1994, 8, 221- 239.
doi: 10.1007/BF02142692 |
2 |
López G , Martín V , Wang F , et al. Solving the split feasibility problem without prior knowledge of matrix norms[J]. Inverse Problems, 2012, 28, 085004.
doi: 10.1088/0266-5611/28/8/085004 |
3 |
Byrne C . Iterative oblique projection onto convex sets and the split feasibility problem[J]. Inverse Problems, 2002, 18, 441- 453.
doi: 10.1088/0266-5611/18/2/310 |
4 |
Byrne C . A unified treatment of some iterative algorithms in signal processing and image reconstruction[J]. Inverse Problems, 2004, 20, 103- 120.
doi: 10.1088/0266-5611/20/1/006 |
5 |
Qu B , Xiu N . A note on the CQ algorithm for the split feasibility problem[J]. Inverse Problems, 2005, 21, 1655- 1665.
doi: 10.1088/0266-5611/21/5/009 |
6 |
Wang F . On the convergence of CQ algorithm with variable steps for the split equality problem[J]. Numerical Algorithms, 2017, 74, 927- 935.
doi: 10.1007/s11075-016-0177-9 |
7 | Wang F , Xu H , Su M . Choices of variable steps of the CQ algorithm for the split feasibility problem[J]. Fixed Point Theory, 2011, 12, 489- 496. |
8 |
Yang Q . On variable-step relaxed projection algorithm for variational inequalities[J]. Journal of Mathematical Analysis and Applications, 2005, 302, 166- 179.
doi: 10.1016/j.jmaa.2004.07.048 |
9 |
He S , Zhao Z , Luo B . A relaxed self-adaptive CQ algorithm for the multiple-setes split feasibility problem[J]. Optimization, 2015, 64, 1907- 1918.
doi: 10.1080/02331934.2014.895898 |
10 |
Moudafi A . A relaxed alternating CQ-algorithm for convex feasibility problems[J]. Nonlinear Analysis, 2013, 79, 117- 121.
doi: 10.1016/j.na.2012.11.013 |
11 |
Qu B , Xiu N . A new halfspace-relaxation projection method for the split feasibility problem[J]. Linear Algebra and its Applications, 2008, 428, 1218- 1229.
doi: 10.1016/j.laa.2007.03.002 |
12 |
Wang F . Polyak's gradient method for split feasibility problem constrained by level sets[J]. Numerical Algorithms, 2018, 77, 925- 938.
doi: 10.1007/s11075-017-0347-4 |
13 |
Yang Q . The relaxed CQ algorithm solving the split feasibility problem[J]. Inverse Problems, 2004, 20, 1261- 1266.
doi: 10.1088/0266-5611/20/4/014 |
14 |
Yu H , Zhan W , Wang F . The ball-relaxed CQ algorithms for the split feasibility problem[J]. Optimization, 2018, 67 (10): 1687- 1699.
doi: 10.1080/02331934.2018.1485677 |
15 | Bauschke H , Combettes P . Convex Analysis and Monotone Operator Theory in Hilbert Space[M]. New York: Springer-Verlag, 2011. |
16 |
He S , Tian H . Selective projection methods for solving a class of variational inequalities[J]. Numerical Algorithms, 2019, 80 (2): 617- 634.
doi: 10.1007/s11075-018-0499-x |
17 |
Xu H . A variable Krasnosel$\rm{\ddot{s}}$kii-Mann algorithm and the multiple-set split feasibility problem[J]. Inverse Problems, 2006, 22 (6): 2021- 2034.
doi: 10.1088/0266-5611/22/6/007 |
18 | Lin A, Han S. Projection on an ellipsoid[R]. Department of Mathematical Sciences, The Johns Hopkins University, 2001. |
19 |
Dai Y . Fast algorithms for projection on an ellipsoid[J]. SIAM Journal on Optimization, 2006, 16 (4): 986- 1006.
doi: 10.1137/040613305 |
[1] | XUAN Hongwei, LI Zhendong, SHENG Zhoushan, LIU Lindong. Cost allocation for multiple pairs of shortest paths recovery game on disrupted networks [J]. Operations Research Transactions, 2021, 25(3): 183-199. |
[2] | ZHANG Liwei. Discussion on second-order analysis in augmented Lagrange method [J]. Operations Research Transactions, 2021, 25(3): 1-14. |
[3] | HUANG Zhipeng, LI Xingquan, ZHU Wenxing. Optimization models and algorithms for placement of very large scale integrated circuits [J]. Operations Research Transactions, 2021, 25(3): 15-36. |
[4] | CHEN Feng. Research and application of operations research on intelligent scheduling decision support system for automotive outbound logistics [J]. Operations Research Transactions, 2021, 25(3): 37-73. |
[5] | XU Zi, ZHANG Huiling. Optimization algorithms and their complexity analysis for non-convex minimax problems [J]. Operations Research Transactions, 2021, 25(3): 74-86. |
[6] | KE Rongzhu, ZHANG Jin. On the first order approach for bilevel programming: moral hazard case [J]. Operations Research Transactions, 2021, 25(3): 87-104. |
[7] | SUN Cong, ZHANG Ya. A brief review on gradient method [J]. Operations Research Transactions, 2021, 25(3): 119-132. |
[8] | Jianfeng REN, Xiaoyun TIAN. Squared metric facility location problem with outliers [J]. Operations Research Transactions, 2021, 25(1): 114-122. |
[9] | Deqiang QU, Youlin SHANG, Yue ZHAN, Dan WU. A new parameterless filled function for global optimization problems [J]. Operations Research Transactions, 2021, 25(1): 89-95. |
[10] | Jiali CHEN, Ying ZHANG, Shenggang WANG, Xiaoying XIE. A new filled function and its application in data fitting problems [J]. Operations Research Transactions, 2021, 25(1): 81-88. |
[11] | Xiuling WANG, Xunhua GONG. An existence theorem for efficient solutions of symmetric vector quasi-equilibrium problems [J]. Operations Research Transactions, 2021, 25(1): 73-80. |
[12] | Hongwu LI, Min XIE, Rong ZHANG. A proximal gradient method for nonsmooth convex optimization problems [J]. Operations Research Transactions, 2021, 25(1): 61-72. |
[13] | MIAO Xiaonan, GU Jian, XIAO Xiantao. A cubic regularization method for solving nonsmooth equations [J]. Operations Research Transactions, 2019, 23(2): 17-30. |
[14] | LIANG Renli, BAI Yanqin. A splitting augmented Lagrangian method embedding in the BB method for solving the sparse logistic problem [J]. Operations Research Transactions, 2019, 23(2): 86-94. |
[15] | ZHOU Xinyi, WANG Ke, WU Donghua, WANG Chen. Cross entropy algorithm with multiple important sample level estimation for global optimization problems [J]. Operations Research Transactions, 2019, 23(1): 15-27. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||