运筹学学报(中英文) ›› 2025, Vol. 29 ›› Issue (4): 94-102.doi: 10.15960/j.cnki.issn.1007-6093.2025.04.008

• 论文 • 上一篇    下一篇

生成线性森林的极值问题

季雪1,*(), 康丽英1, 薛益赛1   

  1. 1. 上海大学数学系, 上海 200444
  • 收稿日期:2022-03-16 出版日期:2025-12-15 发布日期:2025-12-11
  • 通讯作者: 季雪 E-mail:jixuexingyun@163.com
  • 基金资助:
    国家自然科学基金(11871329);国家自然科学基金(11971298)

The extremal problem of spanning linear forests

Xue JI1,*(), Liying KANG1, Yisai XUE1   

  1. 1. Department of Mathematics, Shanghai University, Shanghai 200444, China
  • Received:2022-03-16 Online:2025-12-15 Published:2025-12-11
  • Contact: Xue JI E-mail:jixuexingyun@163.com

摘要:

$\mathcal{F}$是一个图族, 如果$G$不包含$\mathcal{F}$中的任意一个图作为子图, 则称$G$是禁用图族$\mathcal{F}$的。禁用图族$\mathcal{F}$$n$阶图所能达到的最大边数称为$\mathcal{F}$的Turán数, 记作$ex(n, \mathcal{F})$。线性森林是指连通分支都是路或孤立点的图。设$\mathcal{L}_{n, k}'$是一个除图$P_{k+1}\cup(n-k-1)K_1$外, 包含其他所有边数为$k$$n$阶线性森林组成的图族。本文给出了$\mathcal{L}_{n, k}'$的Turán数和对应的极值图。进一步我们给出了禁用$\mathcal{L}_{n, k}'$$n$阶图的谱半径的最大值和对应的极值图。

关键词: 线性森林, Turán数, 谱半径, 极值图

Abstract:

Let $\mathcal{F}$ be a family of graphs. If $G$ does not contain every graph in $\mathcal{F}$ as a subgraph, then $G$ is said to be $\mathcal{F}$-free. The Turán number $ex(n, \mathcal{F})$ is defined to be the maximum number of edges in a graph on $n$ vertices that is $\mathcal{F}$-free. A linear forest is a graph whose connected components are all paths or isolated vertices. Let $\mathcal{L}_{n, k}'$ be the family of all linear forests of order $n$ with $k$ edges except $P_{k+1}\cup(n-k-1)K_1$. In this paper, we give Turán number of $\mathcal{L}_{n, k}'$ and corresponding extremal graphs. Furthermore, we give the maximum spectral radius of graphs of order $n$ that are $\mathcal{L}_{n, k}'$-free and the corresponding extremal graphs.

Key words: linear forest, Turán number, spectral radius, extremal graphs

中图分类号: