运筹学学报(中英文) ›› 2025, Vol. 29 ›› Issue (1): 185-197.doi: 10.15960/j.cnki.issn.1007-6093.2025.01.015

•   • 上一篇    下一篇

给定悬挂点数的具有最大无符号拉普拉斯谱半径的k一致超图

杨禹1, 朱忠熏2,*(), 周鋆鹏2   

  1. 1. 云南警官学院心理健身教研中心, 云南昆明 650221
    2. 中南民族大学数学与统计学学院, 湖北武汉 430074
  • 收稿日期:2021-12-01 出版日期:2025-03-15 发布日期:2025-03-08
  • 通讯作者: 朱忠熏 E-mail:zzxun73@163.com
  • 基金资助:
    中央高校基本科研业务费专项资金(CZY23009)

The extremal k-uniform hypergraphs with given number of pendent vertices on signless Laplacian spectral radius

Yu YANG1, Zhongxun ZHU2,*(), Junpeng ZHOU2   

  1. 1. Psychological Fitness Teaching and Research Center, Yunnan Police College, Kunming 650221, Yunnan, China
    2. School of Mathematics and Statistics, South-Central University for Nationalities, Wuhan 430074, Hubei, China
  • Received:2021-12-01 Online:2025-03-15 Published:2025-03-08
  • Contact: Zhongxun ZHU E-mail:zzxun73@163.com

摘要:

对于一个$k$一致超图$H=(V, E)$, 设$B (H)$是它的关联矩阵且$\mathcal{Q}(H)=B (H) B (H)^{\top}$是它的无符号拉普拉斯矩阵。$H$的无符号拉普拉斯谱半径是$\mathcal{Q}(H)$的所有特征值的模的最大值。设$\mathcal{H}^n_{k, r}$是具有$n$个点和$r$个悬挂点的连通$k$一致超图的图类。在$\mathcal{H}^n_{k, r}$中, 对于$n-r\geq k$和某些$n-r\in[k-1]$的情形, 本文刻画了具有最大无符号拉普拉斯谱半径的极值超图。

关键词: k一致超图, 无符号拉普拉斯谱半径, 主特征向量

Abstract:

For a $k$-uniform hypergraph $H=(V, E)$, let $B(H)$ be its incidence matrix and $\mathcal{Q}(H)=B(H)B(H)^{\top}$ be its signless Laplacian matrix. The signless Laplacian spectral radius of $H$ is the maximum modulus of all eigenvalues of $\mathcal{Q}(H)$. Let $\mathcal{H}^n_{k, r}$ be the class of connected $k$-uniform hypergraphs with $n$ vertices and $r$ pendent vertices. In this paper, the extremal hypergraphs having maximum spectral radii in $\mathcal{H}^n_{k, r}$ are characterized for $n-r\geq k$ and some cases $n-r\in [k-1]$, respectively.

Key words: k-uniform hypergraph, signless Laplacian spectral radius, principal eigenvector

中图分类号: