运筹学学报(中英文) ›› 2025, Vol. 29 ›› Issue (1): 198-206.doi: 10.15960/j.cnki.issn.1007-6093.2025.01.016
收稿日期:
2021-07-20
出版日期:
2025-03-15
发布日期:
2025-03-08
通讯作者:
计省进
E-mail:jishengjin@sdut.edu.cn
基金资助:
Received:
2021-07-20
Online:
2025-03-15
Published:
2025-03-08
Contact:
Shengjin JI
E-mail:jishengjin@sdut.edu.cn
摘要:
设
中图分类号:
李宝欣, 计省进. 单圈图的零强迫和全强迫[J]. 运筹学学报(中英文), 2025, 29(1): 198-206.
Baoxin LI, Shengjin JI. Total forcing and zero forcing of unicyclic graphs[J]. Operations Research Transactions, 2025, 29(1): 198-206.
1 |
AIM Minimum Rank-Special Graphs Work Group . Zero forcing sets and the minimum rank of graphs[J]. Linear Algebra and Its Applications, 2008, 428 (7): 1628- 1648.
doi: 10.1016/j.laa.2007.10.009 |
2 | Davila R. Bounding the forcing number of a graph [D]. Houston: Rice University, 2018. |
3 | Chekuri C, Korula N. A graph reduction step preserving element-connectivity and applications [M]//Automata, Languages and Programming, Berlin: Springer, 2009: 254-265. |
4 | Davila R, Kalinowski T, Stephen S. Proof of a conjecture of Davila and Kenter regarding a lower bound for the forcing number in terms of girth and minimum degree [EB/OL]. (2018-03-31)[2021-06-20]. arXiv: 1611.06557. |
5 | Edholm C , Hogben L , La Grange J , et al. Vertex and edge spread of zero forcing number, maximum nullity, and minimum rank of a graph[J]. Linear Algebra & Its Applications, 2012, 436 (12): 4352- 4372. |
6 |
Eroh L , Yi C K . A comparison between the metric dimension and zero forcing number of trees and unicyclic graphs[J]. Acta Mathematica Sinica, 2017, 33 (6): 731- 747.
doi: 10.1007/s10114-017-4699-4 |
7 |
Kalinowski T , Kamcev N , Sudakov B . The zero forcing number of graphs[J]. SIAM Journal on Discrete Mathematics, 2019, 33 (1): 95- 115.
doi: 10.1137/17M1133051 |
8 |
Davila R , Henning M A . Zero forcing in Claw-Free cubic graphs[J]. Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43, 673- 688.
doi: 10.1007/s40840-018-00705-5 |
9 |
Davila R , Henning M A . On the total forcing number of a graph[J]. Discrete Applied Mathematics, 2019, 257, 115- 127.
doi: 10.1016/j.dam.2018.09.001 |
10 |
Davila R , Henning M A . Total forcing sets and zero forcing sets in trees[J]. Discussiones Mathematicae Graph Theory, 2020, 40 (3): 733- 754.
doi: 10.7151/dmgt.2136 |
11 | Davila R, Henning M A. Total forcing and zero forcing in claw-free cubic graphs [EB/OL]. (2017-08-16)[2021-06-20]. arXiv: 1708.05041. |
12 |
Burgarth D , Giovannetti V . Full control by locally induced relaxation[J]. Physical Review Letters, 2007, 99, 100501.
doi: 10.1103/PhysRevLett.99.100501 |
13 |
Burgarth D , Giovannetti V , Hogben L , et al. Logic circuits from zero forcing[J]. Natural Computing, 2015, 14 (3): 485- 490.
doi: 10.1007/s11047-014-9438-5 |
14 |
Barioli F , Barrett W , Fallat S , et al. Zero forcing parameters and minimum rank problems[J]. Linear Algebra and Its Applications, 2010, 433, 401- 411.
doi: 10.1016/j.laa.2010.03.008 |
15 | Hernandez G , Ranilla J , Ranilla-Cortina S . Zero forcing in triangulations[J]. Journal of Computational & Applied Mathematics, 2019, 354, 123- 130. |
16 | Benson K F, Ferrero D, Flagg M, et al. Power domination and zero forcing [EB/OL]. (2017-02-22)[2021-06-20]. arXiv: 1510.02421. |
17 | Chilakammari K , Dean N , Kang C X , et al. Iteration index of a zero forcing set in a graph[J]. Bulletin of the Institute of Combinatorics and Its Applications, 2012, 64, 57- 72. |
18 |
Lu L , Wu B , Tang Z . Note: Proof of a conjecture on the zero forcing number of a graph[J]. Discrete Applied Mathematics, 2012, 160, 1994- 2005.
doi: 10.1016/j.dam.2012.04.003 |
19 |
Gentner M , Penso L , Rautenbanch D , et al. Extremal values and bounds for the zero forcing number[J]. Discrete Applied Mathematics, 2016, 214, 196- 200.
doi: 10.1016/j.dam.2016.06.004 |
20 |
Gentner M , Rautenbanch D . Some bounds on the zero forcing number of a graph[J]. Discrete Applied Mathematics, 2018, 236, 203- 213.
doi: 10.1016/j.dam.2017.11.015 |
21 |
Davila R , Henning M A . The forcing number of graphs with a given girth[J]. Quaestiones Mathematicae, 2018, 41, 189- 204.
doi: 10.2989/16073606.2017.1376230 |
[1] | 张莹, 敬新奇, 王长军. 一个双拟阵下的最优定价存在性猜想[J]. 运筹学学报, 2023, 27(4): 166-174. |
[2] | 张杰, 姬燕. 单圈图的Steiner Wiener指数的极值问题[J]. 运筹学学报, 2023, 27(3): 178-184. |
[3] | 袁玲, 王文环. 不含偶圈(n, m)-图匹配多项式的最大根[J]. 运筹学学报, 2023, 27(3): 150-158. |
[4] | 张安, 陈永, 陈光亭, 陈占文, 舒巧君, 林国辉. 优先序约束的排序问题:基于最大匹配的近似算法[J]. 运筹学学报, 2022, 26(3): 57-74. |
[5] | 余桂东, 阮征, 舒阿秀, 于涛. 单圈图的次大(拉普拉斯)分离度[J]. 运筹学学报, 2020, 24(4): 128-134. |
[6] | 林杨, 王应明. 不确定偏好序下的双边匹配博弈[J]. 运筹学学报, 2020, 24(1): 155-162. |
[7] | 李瞳, 王光辉, 周文玲. 图与超图中的彩色匹配综述[J]. 运筹学学报, 2019, 23(3): 77-90. |
[8] | 刘岩, 雷梦霞, 黄晓娴. 最大匹配的路变换图[J]. 运筹学学报, 2019, 23(2): 104-112. |
[9] | 李建荣. 中国高考招生匹配市场中的算法设计及公平激励机制[J]. 运筹学学报, 2019, 23(2): 75-85. |
[10] | 孙秋实, 杨筱韵, 王力工, 李希赫, 王朋超. 新单圈图H(p,tK1,m)的拉普拉斯谱刻画[J]. 运筹学学报, 2019, 23(1): 72-80. |
[11] | 苟燕, 张新功. 具有时间与位置相关及维修限制的单机排序问题[J]. 运筹学学报, 2016, 20(3): 33-44. |
[12] | 黄晓娴, 刘岩, 吴博思. 关于分数k-因子临界图与分数k-可扩图的若干结果[J]. 运筹学学报, 2016, 20(1): 125-130. |
[13] | 简相国,袁西英,张曼. 单圈图和双圈图的最大无符号拉普拉斯分离度[J]. 运筹学学报, 2015, 19(2): 99-104. |
[14] | 梅若星, 王力工, 王陆华, 王展青. 单圈图H(p,tK_{1,m})的Laplacian谱刻画[J]. 运筹学学报, 2015, 19(1): 57-64. |
[15] | 李巧, 刘岩. 分数k-因子临界图的条件[J]. 运筹学学报, 2013, 17(4): 123-130. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 22
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 78
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||