1 |
AIM Minimum Rank-Special Graphs Work Group . Zero forcing sets and the minimum rank of graphs[J]. Linear Algebra and Its Applications, 2008, 428 (7): 1628- 1648.
doi: 10.1016/j.laa.2007.10.009
|
2 |
Davila R. Bounding the forcing number of a graph [D]. Houston: Rice University, 2018.
|
3 |
Chekuri C, Korula N. A graph reduction step preserving element-connectivity and applications [M]//Automata, Languages and Programming, Berlin: Springer, 2009: 254-265.
|
4 |
Davila R, Kalinowski T, Stephen S. Proof of a conjecture of Davila and Kenter regarding a lower bound for the forcing number in terms of girth and minimum degree [EB/OL]. (2018-03-31)[2021-06-20]. arXiv: 1611.06557.
|
5 |
Edholm C , Hogben L , La Grange J , et al. Vertex and edge spread of zero forcing number, maximum nullity, and minimum rank of a graph[J]. Linear Algebra & Its Applications, 2012, 436 (12): 4352- 4372.
|
6 |
Eroh L , Yi C K . A comparison between the metric dimension and zero forcing number of trees and unicyclic graphs[J]. Acta Mathematica Sinica, 2017, 33 (6): 731- 747.
doi: 10.1007/s10114-017-4699-4
|
7 |
Kalinowski T , Kamcev N , Sudakov B . The zero forcing number of graphs[J]. SIAM Journal on Discrete Mathematics, 2019, 33 (1): 95- 115.
doi: 10.1137/17M1133051
|
8 |
Davila R , Henning M A . Zero forcing in Claw-Free cubic graphs[J]. Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43, 673- 688.
doi: 10.1007/s40840-018-00705-5
|
9 |
Davila R , Henning M A . On the total forcing number of a graph[J]. Discrete Applied Mathematics, 2019, 257, 115- 127.
doi: 10.1016/j.dam.2018.09.001
|
10 |
Davila R , Henning M A . Total forcing sets and zero forcing sets in trees[J]. Discussiones Mathematicae Graph Theory, 2020, 40 (3): 733- 754.
doi: 10.7151/dmgt.2136
|
11 |
Davila R, Henning M A. Total forcing and zero forcing in claw-free cubic graphs [EB/OL]. (2017-08-16)[2021-06-20]. arXiv: 1708.05041.
|
12 |
Burgarth D , Giovannetti V . Full control by locally induced relaxation[J]. Physical Review Letters, 2007, 99, 100501.
doi: 10.1103/PhysRevLett.99.100501
|
13 |
Burgarth D , Giovannetti V , Hogben L , et al. Logic circuits from zero forcing[J]. Natural Computing, 2015, 14 (3): 485- 490.
doi: 10.1007/s11047-014-9438-5
|
14 |
Barioli F , Barrett W , Fallat S , et al. Zero forcing parameters and minimum rank problems[J]. Linear Algebra and Its Applications, 2010, 433, 401- 411.
doi: 10.1016/j.laa.2010.03.008
|
15 |
Hernandez G , Ranilla J , Ranilla-Cortina S . Zero forcing in triangulations[J]. Journal of Computational & Applied Mathematics, 2019, 354, 123- 130.
|
16 |
Benson K F, Ferrero D, Flagg M, et al. Power domination and zero forcing [EB/OL]. (2017-02-22)[2021-06-20]. arXiv: 1510.02421.
|
17 |
Chilakammari K , Dean N , Kang C X , et al. Iteration index of a zero forcing set in a graph[J]. Bulletin of the Institute of Combinatorics and Its Applications, 2012, 64, 57- 72.
|
18 |
Lu L , Wu B , Tang Z . Note: Proof of a conjecture on the zero forcing number of a graph[J]. Discrete Applied Mathematics, 2012, 160, 1994- 2005.
doi: 10.1016/j.dam.2012.04.003
|
19 |
Gentner M , Penso L , Rautenbanch D , et al. Extremal values and bounds for the zero forcing number[J]. Discrete Applied Mathematics, 2016, 214, 196- 200.
doi: 10.1016/j.dam.2016.06.004
|
20 |
Gentner M , Rautenbanch D . Some bounds on the zero forcing number of a graph[J]. Discrete Applied Mathematics, 2018, 236, 203- 213.
doi: 10.1016/j.dam.2017.11.015
|
21 |
Davila R , Henning M A . The forcing number of graphs with a given girth[J]. Quaestiones Mathematicae, 2018, 41, 189- 204.
doi: 10.2989/16073606.2017.1376230
|