[1] Turán P. On an external problem in graph theory [J]. Matematikaiés Lapok, 1941, 48: 436-452. [2] Erdős P, Gallai T. On maximal paths and circuits of graphs [J]. Acta Mathematica Academiae Scientiarum Hungarica, 1959, 10: 337-356. [3] Bushaw N, Kettle N. Turán numbers of multiple paths and equibipartite forests [J]. Combinatorics, Probability and Computing, 2011, 20(6): 837-853. [4] Yuan L T, Zhang X D. The Turán number of disjoint copies of paths [J]. Discrete Mathematics, 2017, 340: 132-139. [5] Lidicky B, Liu H, Palmer C. On the Turán number of forests [J]. The Electronic Journal of Combinatorics, 2012, 20(2): 713-718. [6] Ning B, Wang J. The formula for Turán number of spanning linear forests [J]. Discrete Mathematics, 2020, 343: 111924. [7] Brualdi R A, Hoffman A J. On the spectral radius of (0,1)-matrices [J]. Linear Algebra and its Applications, 1985, 65: 133-146. [8] Nikiforov V. Bounds on graph eigenvalues II [J]. Linear Algebra and Its Applications, 2006, 427: 183-189. [9] Nikiforov V. Some New Results in Extremal Graph Theory [M]. Cambridge: Cambridge University Press, 2011. [10] Nikiforov V. The spectral radius of graphs without paths and cycles of specified length [J]. Linear Algebra and Its Applications, 2010, 432(9): 2243-2256. [11] Chen M Z, Zhang X D. Spectral extremal results with forbidding linear forests [J]. Graphs and Combinatorics, 2019, 35: 335-351. [12] Dirac G A. Some theorems on abstract graphs [J]. Proceedings of the London Mathematical Society, 1952, 2: 69-81. [13] Chen M Z, Zhang X D. Erdős-Gallai stability theorem for linear forests [J]. Discrete Mathematics, 2019, 342: 904-916. [14] Yuan H, Shu J L, Fang K. A sharp upper bound of the spectral radius of graphs [J]. Journal of Combinatorial Theory, 2001, 81(2): 177-183. [15] Nikiforov V. Some inequalities for the largest eigenvalue of a graph [J]. Combinatorics, Probability and Computing, 2002, 11(2): 179-189. |