运筹学学报(中英文) ›› 2025, Vol. 29 ›› Issue (3): 135-159.doi: 10.15960/j.cnki.issn.1007-6093.2025.03.007
所属专题: 第九届中国运筹学会科学技术奖获奖者专辑
• 第九届中国运筹学会科学技术奖获奖者专辑 • 上一篇 下一篇
收稿日期:2025-03-21
									
				
									
				
									
				
											出版日期:2025-09-15
									
				
											发布日期:2025-09-09
									
			通讯作者:
					胡照林
											E-mail:russell@tongji.edu.cn
												基金资助:Received:2025-03-21
									
				
									
				
									
				
											Online:2025-09-15
									
				
											Published:2025-09-09
									
			Contact:
					Zhaolin HU   
											E-mail:russell@tongji.edu.cn
												摘要:
风险管理在不确定性环境决策中常常起着重要作用。在量化风险管理中,评估和优化风险指标需要高效的计算技术和可靠的理论保证。本文介绍量化风险管理的几个主题,并回顾关于这些主题的一些研究和进展。我们考虑几个风险指标并研究涉及这些指标的决策模型,主要关注相关的计算技术和理论性质。我们说明随机优化作为一种强大的工具,可以用来有效处理这些问题。
中图分类号:
胡照林. 基于随机优化的量化风险管理的一些研究[J]. 运筹学学报(中英文), 2025, 29(3): 135-159.
Zhaolin HU. Some studies on stochastic optimization based quantitative risk management[J]. Operations Research Transactions, 2025, 29(3): 135-159.
| 1 | GlassermanP.Monte Carlo Methods in Financial Engineering[M].New York:Springer,2004. | 
| 2 | RuszczyńskiA,ShapiroA.Optimization of convex risk functions[J].Mathematics of Operations Research,2006,31(3):433-452. doi: 10.1287/moor.1050.0186 | 
| 3 | ShapiroA,DentchevaD,RuszczyńskiA.Lectures on Stochastic Programming: Modeling and Theory[M].Philadelphia:SIAM,2014. | 
| 4 | JorionP.Value at Risk[M].New York:McGraw-Hill,2006. | 
| 5 | RockafellarR T,UryasevS.Optimization of conditional value-at-risk[J].The Journal of Risk,2000,2(3):21-41. doi: 10.21314/JOR.2000.038 | 
| 6 | HongL J,HuZ,LiuG.Monte Carlo methods for value-at-risk and conditional value-at-risk: A review[J].ACM Transactions on Modeling and Computer Simulation,2014,24(4):Article 22. | 
| 7 | ArtznerP,DelbaenF,EberJ M,et al.Coherent measures of risk[J].Mathematical Finance,1999,9(3):203-228. doi: 10.1111/1467-9965.00068 | 
| 8 | FÖllmerH,SchiedA.Convex measures of risk and trading constraints[J].Finance and Stochastics,2002,6,429-447. doi: 10.1007/s007800200072 | 
| 9 | FrittelliM,GianinE R.Putting order in risk measures[J].Journal of Banking and Finance,2002,26(7):1473-1486. doi: 10.1016/S0378-4266(02)00270-4 | 
| 10 | CharnesA,CooperW W,SymondsG H.Cost horizons and certainty equivalents: An approach to stochastic programming of heating oil[J].Management Science,1958,4(3):235-263. doi: 10.1287/mnsc.4.3.235 | 
| 11 | Ben-TalA,TeboulleM.Expected utility, penalty functions, and duality in stochastic nonlinear programming[J].Management Science,1986,32(11):1445-1466. doi: 10.1287/mnsc.32.11.1445 | 
| 12 | Ben-Tal,A,TeboulleM.An old-new concept of convex risk measures: The optimized certainty equivalent[J].Mathematical Finance,2007,17(3):449-476. doi: 10.1111/j.1467-9965.2007.00311.x | 
| 13 | Hamm A M, Salfeld T, Weber S. Stochastic root finding for optimized certainty equivalents[C]//Proceedings of the 2013 Winter Simulation Conference, 2013: 922-932. | 
| 14 | RockafellarR T,UryasevS.The fundamental risk quadrangle in risk management, optimization and statistical estimation[J].Surveys in Operations Research and Management Science,2013,18(1):33-53. | 
| 15 | RockafellarR T,RoysetJ O.Measures of residual risk with connections to regression, risk tracking, surrogate models, and ambiguity[J].SIAM Journal on Optimization,2015,25(2):1179-1208. doi: 10.1137/151003271 | 
| 16 | DunkelJ,WeberS.Stochastic root finding and efficient estimation of convex risk measures[J].Operations Research,2010,58(5):1505-1521. doi: 10.1287/opre.1090.0784 | 
| 17 | TrindadeA A,UryasevS,ShapiroA,et al.Financial prediction with constrained tail risk[J].Journal of Banking and Finance,2007,31(11):3524-3538. doi: 10.1016/j.jbankfin.2007.04.014 | 
| 18 | DurrettR.Probability: Theory and Examples[M].Cambridge:Cambridge University Press,2019. | 
| 19 | HuberP J,RonchettiE M.Robust Statistics[M].New Jersey:John Wiley & Sons,2011. | 
| 20 | HongL J,LiuG.Simulating sensitivities of conditional value-at-risk[J].Management Science,2009,55(2):281-293. doi: 10.1287/mnsc.1080.0901 | 
| 21 | GlynnP W,FanL,FuM C,et al.Central limit theorems for estimated functions at estimated points[J].Operations Research,2020,68(5):1557-1563. doi: 10.1287/opre.2019.1922 | 
| 22 | KrokhmalP A.Higher moment coherent risk measures[J].Quantitative Finance,2007,7(4):373-387. doi: 10.1080/14697680701458307 | 
| 23 | AlexanderS,ColemanT F,LiY.Minimizing CVaR and VaR for a portfolio of derivatives[J].Journal of Banking and Finance,2006,30(2):583-605. doi: 10.1016/j.jbankfin.2005.04.012 | 
| 24 | HuZ,ZhangD.Utility-based shortfall risk: Efficient computations via Monte Carlo[J].Naval Research Logistics,2018,65(5):378-392. doi: 10.1002/nav.21814 | 
| 25 | Hegde V, Menon A S, Prashanth L A, et al. Online estimation and optimization of utility-based shortfall risk[J/OL].[2025-08-05]. Mathematics of Operations Research. https://doi.org/10.1287/moor.2022.0266. | 
| 26 | LuedtkeJ,AhmedS.A sample approximation approach for optimization with probabilistic constraints[J].SIAM Journal on Optimization,2008,19(2):674-699. doi: 10.1137/070702928 | 
| 27 | PagnoncelliB K,AhmedS,ShapiroA.Sample average approximation method for chance constrained programming: Theory and applications[J].Journal of Optimization Theory and Applications,2009,142,399-416. doi: 10.1007/s10957-009-9523-6 | 
| 28 | CalafioreG,CampiM C.Uncertain convex programs: Randomized solutions and confidence levels[J].Mathematical Programming,2005,102,25-46. doi: 10.1007/s10107-003-0499-y | 
| 29 | CalafioreG,CampiM C.The scenario approach to robust control design[J].IEEE Transactions on Automatic Control,2006,51(5):742-753. doi: 10.1109/TAC.2006.875041 | 
| 30 | De FariasD P,Van RoyB.On constraint sampling in the linear programming approach to approximate dynamic programming[J].Mathematics of Operations Research,2004,29(3):462-478. doi: 10.1287/moor.1040.0094 | 
| 31 | KüçükyavuzS,JiangR.Chance-constrained optimization under limited distributional information: A review of reformulations based on sampling and distributional robustness[J].EURO Journal on Computational Optimization,2022,10,100030. doi: 10.1016/j.ejco.2022.100030 | 
| 32 | HenrionR,MÖllerA.A gradient formula for linear chance constraints under Gaussian distribution[J].Mathematics of Operations Research,2012,37(3):475-488. doi: 10.1287/moor.1120.0544 | 
| 33 | van AckooijW,HenrionR.Gradient formulae for nonlinear probabilistic constraints with Gaussian and Gaussian-like distributions[J].SIAM Journal on Optimization,2014,24(4):1864-1889. doi: 10.1137/130922689 | 
| 34 | HongL J.Estimating quantile sensitivities[J].Operations Research,2009,57(1):118-130. doi: 10.1287/opre.1080.0531 | 
| 35 | HongL J,JiangG.Gradient and hessian of joint probability function with applications on chance-constrained programs[J].Journal of the Operations Research Society of China,2017,5,431-455. doi: 10.1007/s40305-017-0154-6 | 
| 36 | Feng G, Liu G. Conditional Monte Carlo: A change-of-variables approach[EB/OL].[2025-08-05]. https://arxiv.org/abs/1603.06378. | 
| 37 | HongL J,YangY,ZhangL.Sequential convex approximations to joint chance constrained programs: A Monte Carlo approach[J].Operations Research,2011,59(3):617-630. doi: 10.1287/opre.1100.0910 | 
| 38 | HuZ,HongL J,ZhangL.A smooth Monte Carlo approach to joint chance constrained program[J].IIE Transactions,2013,45(7):716-735. doi: 10.1080/0740817X.2012.745205 | 
| 39 | ShanF,ZhangL,XiaoX.A smoothing function approach to joint chance-constrained programs[J].Journal of Optimization Theory and Applications,2014,163,181-199. doi: 10.1007/s10957-013-0513-3 | 
| 40 | CuiY,LiuJ,PangJ S.Nonconvex and nonsmooth approaches for affine chance-constrained stochastic programs[J].Set-Valued and Variational Analysis,2022,30(3):1149-1211. doi: 10.1007/s11228-022-00639-y | 
| 41 | Peña-OrdieresA,LuedtkeJ,WächterA.Solving chance-constrained problems via a smooth sample-based nonlinear approximation[J].SIAM Journal on Optimization,2020,30(3):2221-2250. doi: 10.1137/19M1261985 | 
| 42 | HuZ,SunW,ZhuS.Chance constrained programs with Gaussian mixture models[J].IISE Transactions,2022,54(12):1117-1130. doi: 10.1080/24725854.2021.2001608 | 
| 43 | WeiJ,HuZ,LuoJ.Appointment scheduling optimization with chance constraints in a singleserver consultation system[J].Systems Engineering-Theory & Practice,2024,44(10):3400-3417. | 
| 44 | WeiJ,HuZ,LuoJ,et al.Enhanced branch-and-bound algorithm for chance constrained programs with Gaussian mixture models[J].Annals of Operations Research,2024,338(2):1283-1315. | 
| 45 | Pang X, Zhu S, Hu Z. Chance constrained program with quadratic randomness: A unified approach based on Gaussian mixture distribution[EB/OL].[2025-07-06]. arXiv:2303.00555v1. | 
| 46 | GordyM B,JunejaS.Nested simulation in portfolio risk measurement[J].Management Science,2010,56(9):1658-1673. | 
| 47 | BroadieM,DuY,MoallemiC C.Risk estimation via regression[J].Operations Research,2015,63(5):1077-1097. doi: 10.1287/opre.2015.1419 | 
| 48 | HongL J,JunejaS,LiuG.Kernel smoothing for nested estimation with application to portfolio risk measurement[J].Operations Research,2017,65(3):657-673. doi: 10.1287/opre.2017.1591 | 
| 49 | ZhangK,LiuG,WangS.Bootstrap-based budget allocation for nested simulation[J].Operations Research,2022,70(2):1128-1142. doi: 10.1287/opre.2020.2071 | 
| 50 | WangW,WangY,ZhangX.Smooth nested simulation: Bridging cubic and square root convergence rates in high dimensions[J].Management Science,2024,70(2):9031-9057. | 
| 51 | Liu G, Zhang K. A tutorial on nested simulation[C]//Proceedings of the 2024 Winter Simulation Conference, 2024: 1-15. | 
| 52 | HuZ,HongL J.Robust simulation with likelihood-ratio constrained input uncertainty[J].INFORMS Journal on Computing,2022,34(4):2350-2367. doi: 10.1287/ijoc.2022.1169 | 
| 53 | KuhnD,ShafieeS,WiesemannW.Distributionally robust optimization[J].Acta Numerica,2025,34,579-804. doi: 10.1017/S0962492924000084 | 
| 54 | ZhuS,FukushimaM.Worst-case conditional value-at-risk with application to robust portfolio management[J].Operations Research,2009,57(5):1155-1168. | 
| 55 | GuoS,XuH.Distributionally robust shortfall risk optimization model and its approximation[J].Mathematical Programming,2019,174(1):473-498. | 
| [1] | 胡胜龙. 张量分解的唯一性[J]. 运筹学学报(中英文), 2025, 29(3): 34-60. | 
| [2] | 郭田德, 幸天驰, 韩丛英, 孟帅. 人工智能中的生成式方法: 数学模型、优化算法及其应用[J]. 运筹学学报(中英文), 2025, 29(3): 1-33. | 
| [3] | 周安娃, 何佳怡. 实成对完全正矩阵[J]. 运筹学学报(中英文), 2025, 29(3): 160-178. | 
| [4] | 鲁炜, 卢星宇, 邹丁, 陈博晓, 周义涵, 张国川. 绿色计算下算力调度优化问题与技术研究[J]. 运筹学学报(中英文), 2025, 29(3): 179-201. | 
| [5] | 陈林. 加性组合在若干经典组合优化问题中的应用[J]. 运筹学学报(中英文), 2025, 29(3): 202-222. | 
| [6] | 包承龙, 陈昌. 关于Bregman迭代在求解朗道自由能泛函极小化问题中的研究[J]. 运筹学学报(中英文), 2025, 29(3): 243-266. | 
| [7] | 袁柳洋, 汤梦瑶, 迟晓妮. 一类新的无参数的填充打洞函数法[J]. 运筹学学报(中英文), 2025, 29(2): 214-220. | 
| [8] | 赵娣, 余金, 鲁习文. 单机两代理串行分批排序问题的近似算法[J]. 运筹学学报(中英文), 2025, 29(2): 184-193. | 
| [9] | 夏远梅, 夏丹丹, 赵克全. 多目标优化的广义Tchebycheff范数标量化[J]. 运筹学学报(中英文), 2025, 29(2): 175-183. | 
| [10] | 张玉茹, 张雪, 兰茹. 一类线性反问题的变尺度外推硬阈值算法[J]. 运筹学学报(中英文), 2025, 29(2): 158-174. | 
| [11] | 马素霞, 高岳林, 林洪伟, 张博. 一种新的全局优化无参数填充函数方法[J]. 运筹学学报(中英文), 2025, 29(2): 141-157. | 
| [12] | 刘欣恬, 朱文兴. 超图平衡二划分的离散迭代优化算法[J]. 运筹学学报(中英文), 2025, 29(2): 128-140. | 
| [13] | 林浩, 何程. 最小分枝支撑树问题及其在选址问题中的应用[J]. 运筹学学报(中英文), 2025, 29(2): 103-112. | 
| [14] | 郭思琦, 周萍, 蒋义伟, 季敏. 考虑碳排放成本的计件维护单机调度问题[J]. 运筹学学报(中英文), 2025, 29(2): 68-79. | 
| [15] | 陈巧, 林惠玲. 广义混合拟变分不等式的间隙函数及其误差界[J]. 运筹学学报(中英文), 2025, 29(2): 44-57. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||
