运筹学学报(中英文) ›› 2025, Vol. 29 ›› Issue (3): 135-159.doi: 10.15960/j.cnki.issn.1007-6093.2025.03.007
• • 上一篇
胡照林*
收稿日期:
2025-03-21
发布日期:
2025-09-09
通讯作者:
胡照林 E-mail:russell@tongji.edu.cn
基金资助:
HU Zhaolin*
Received:
2025-03-21
Published:
2025-09-09
摘要: 风险管理在不确定性环境决策中常常起着重要作用。在量化风险管理中,评估和优化风险指标需要高效的计算技术和可靠的理论保证。本文介绍量化风险管理的几个主题,并回顾关于这些主题的一些研究和进展。我们考虑几个风险指标并研究涉及这些指标的决策模型,主要关注相关的计算技术和理论性质。我们说明随机优化作为一种强大的工具,可以用来有效处理这些问题。
中图分类号:
胡照林. 基于随机优化的量化风险管理的一些研究[J]. 运筹学学报(中英文), 2025, 29(3): 135-159.
HU Zhaolin. Some studies on stochastic optimization based quantitative risk management[J]. Operations Research Transactions, 2025, 29(3): 135-159.
[1] Glasserman P. Monte Carlo Methods in Financial Engineering [M]. New York: Springer, 2004. [2] Ruszczyński A, Shapiro A. Optimization of convex risk functions [J]. Mathematics of Operations Research, 2006, 31(3): 433-452. [3] Shapiro A, Dentcheva D, Ruszczyński A. Lectures on Stochastic Programming: Modeling and Theory [M]. Philadelphia: SIAM, 2014. [4] Jorion P. Value at Risk [M]. New York: McGraw-Hill, 2006. [5] Rockafellar R T, Uryasev S. Optimization of conditional value-at-risk [J]. The Journal of Risk, 2000, 2(3): 21-41. [6] Hong L J, Hu Z, Liu G. Monte Carlo methods for value-at-risk and conditional value-at-risk: A review [J]. ACM Transactions on Modeling and Computer Simulation, 2014, 24(4): Article 22. [7] Artzner P, Delbaen F, Eber J M, et al. Coherent measures of risk [J]. Mathematical Finance, 1999, 9(3): 203-228. [8] FÖllmer H, Schied A. Convex measures of risk and trading constraints [J]. Finance and Stochastics, 2002, 6: 429-447. [9] Frittelli M, Gianin E R. Putting order in risk measures [J]. Journal of Banking and Finance, 2002, 26(7): 1473-1486. [10] Charnes A, Cooper W W, Symonds G H. Cost horizons and certainty equivalents: An approach to stochastic programming of heating oil [J]. Management Science, 1958, 4(3): 235-263. [11] Ben-Tal A, Teboulle M. Expected utility, penalty functions, and duality in stochastic nonlinear programming [J]. Management Science, 1986, 32(11): 1445-1466. [12] Ben-Tal, A, Teboulle M. An old-new concept of convex risk measures: The optimized certainty equivalent [J]. Mathematical Finance, 2007, 17(3): 449-476. [13] Hamm A M, Salfeld T, Weber S. Stochastic root finding for optimized certainty equivalents [C]//Proceedings of the 2013 Winter Simulation Conference, 2013: 922-932. [14] Rockafellar R T, Uryasev S. The fundamental risk quadrangle in risk management, optimization and statistical estimation [J]. Surveys in Operations Research and Management Science, 2013, 18(1): 33-53. [15] Rockafellar R T, Royset J O. Measures of residual risk with connections to regression, risk tracking, surrogate models, and ambiguity [J]. SIAM Journal on Optimization, 2015, 25(2): 1179-1208. [16] Dunkel J, Weber S. Stochastic root finding and efficient estimation of convex risk measures [J]. Operations Research, 2010, 58(5): 1505-1521. [17] Trindade A A, Uryasev S, Shapiro A, et al. Financial prediction with constrained tail risk [J]. Journal of Banking and Finance, 2007, 31(11): 3524-3538. [18] Durrett R. Probability: Theory and Examples [M]. Cambridge: Cambridge University Press, 2019. [19] Huber P J, Ronchetti E M. Robust Statistics [M]. New Jersey: John Wiley & Sons, 2011. [20] Hong L J, Liu G. Simulating sensitivities of conditional value-at-risk [J]. Management Science, 2009, 55(2): 281-293. [21] Glynn P W, Fan L, Fu M C, et al. Central limit theorems for estimated functions at estimated points [J]. Operations Research, 2020, 68(5): 1557-1563. [22] Krokhmal P A. Higher moment coherent risk measures [J]. Quantitative Finance, 2007, 7(4): 373-387. [23] Alexander S, Coleman T F, Li Y. Minimizing CVaR and VaR for a portfolio of derivatives [J]. Journal of Banking and Finance, 2006, 30(2): 583-605. [24] Hu Z, Zhang D. Utility-based shortfall risk: Efficient computations via Monte Carlo [J]. Naval Research Logistics, 2018, 65(5): 378-392. [25] Hegde V, Menon A S, Prashanth L A, et al. Online estimation and optimization of utility-based shortfall risk [J/OL]. [2025-08-05]. Mathematics of Operations Research. https://doi.org/10.1287/moor.2022.0266. [26] Luedtke J, Ahmed S. A sample approximation approach for optimization with probabilistic constraints [J]. SIAM Journal on Optimization, 2008, 19(2): 674-699. [27] Pagnoncelli B K, Ahmed S, Shapiro A. Sample average approximation method for chance constrained programming: Theory and applications [J]. Journal of Optimization Theory and Applications, 2009, 142: 399-416. [28] Calafiore G, Campi M C. Uncertain convex programs: Randomized solutions and confidence levels [J]. Mathematical Programming, 2005, 102: 25-46. [29] Calafiore G, Campi M C. The scenario approach to robust control design [J]. IEEE Transactions on Automatic Control, 2006, 51(5): 742-753. [30] De Farias D P, Van Roy B. On constraint sampling in the linear programming approach to approximate dynamic programming [J]. Mathematics of Operations Research, 2004, 29(3): 462-478. [31] Küçükyavuz S, Jiang R. Chance-constrained optimization under limited distributional information: A review of reformulations based on sampling and distributional robustness [J]. EURO Journal on Computational Optimization, 2022, 10: 100030. [32] Henrion R, MÖller A. A gradient formula for linear chance constraints under Gaussian distribution [J]. Mathematics of Operations Research, 2012, 37(3): 475-488. [33] van Ackooij W, Henrion R. Gradient formulae for nonlinear probabilistic constraints with Gaussian and Gaussian-like distributions [J]. SIAM Journal on Optimization, 2014, 24(4): 1864-1889. [34] Hong L J. Estimating quantile sensitivities [J]. Operations Research, 2009, 57(1): 118-130. [35] Hong L J, Jiang G. Gradient and hessian of joint probability function with applications on chance-constrained programs [J]. Journal of the Operations Research Society of China, 2017, 5: 431-455. [36] Feng G, Liu G. Conditional Monte Carlo: A change-of-variables approach [EB/OL]. [2025-08- 05]. https://arxiv.org/abs/1603.06378. [37] Hong L J, Yang Y, Zhang L. Sequential convex approximations to joint chance constrained programs: A Monte Carlo approach [J]. Operations Research, 2011, 59(3): 617-630. [38] Hu Z, Hong L J, Zhang L. A smooth Monte Carlo approach to joint chance constrained program [J]. IIE Transactions, 2013, 45(7): 716-735. [39] Shan F, Zhang L, Xiao X. A smoothing function approach to joint chance-constrained programs [J]. Journal of Optimization Theory and Applications, 2014, 163: 181-199. [40] Cui Y, Liu J, Pang J S. Nonconvex and nonsmooth approaches for affine chance-constrained stochastic programs [J]. Set-Valued and Variational Analysis, 2022, 30(3): 1149-1211. [41] Peña-Ordieres A, Luedtke J, Wächter A. Solving chance-constrained problems via a smooth sample-based nonlinear approximation [J]. SIAM Journal on Optimization, 2020, 30(3): 2221- 2250. [42] Hu Z, Sun W, Zhu S. Chance constrained programs with Gaussian mixture models [J]. IISE Transactions, 2022, 54(12): 1117-1130. [43] Wei J, Hu Z, Luo J. Appointment scheduling optimization with chance constraints in a singleserver consultation system [J]. Systems Engineering-Theory & Practice, 2024, 44(10): 3400- 3417. [44] Wei J, Hu Z, Luo J, et al. Enhanced branch-and-bound algorithm for chance constrained programs with Gaussian mixture models [J]. Annals of Operations Research, 2024, 338(2): 1283-1315. [45] Pang X, Zhu S, Hu Z. Chance constrained program with quadratic randomness: A unified approach based on Gaussian mixture distribution [EB/OL]. [2025-07-06]. arXiv:2303.00555v1. [46] Gordy M B, Juneja S. Nested simulation in portfolio risk measurement [J]. Management Science, 2010, 56(9): 1658-1673. [47] Broadie M, Du Y, Moallemi C C. Risk estimation via regression [J]. Operations Research, 2015, 63(5): 1077-1097. [48] Hong L J, Juneja S, Liu G. Kernel smoothing for nested estimation with application to portfolio risk measurement [J]. Operations Research, 2017, 65(3) 657-673. [49] Zhang K, Liu G, Wang S. Bootstrap-based budget allocation for nested simulation [J]. Operations Research, 2022, 70(2): 1128-1142. [50] Wang W, Wang Y, Zhang X. Smooth nested simulation: Bridging cubic and square root convergence rates in high dimensions [J]. Management Science, 2024, 70(2): 9031-9057. [51] Liu G, Zhang K. A tutorial on nested simulation [C]//Proceedings of the 2024 Winter Simulation Conference, 2024: 1-15. [52] Hu Z, Hong L J. Robust simulation with likelihood-ratio constrained input uncertainty [J]. INFORMS Journal on Computing, 2022, 34(4): 2350-2367. [53] Kuhn D, Shafiee S, Wiesemann W. Distributionally robust optimization [J]. Acta Numerica, 2025, 34: 579-804. [54] Zhu S, Fukushima M. Worst-case conditional value-at-risk with application to robust portfolio management [J]. Operations Research, 2009, 57(5): 1155-1168. [55] Guo S, Xu H. Distributionally robust shortfall risk optimization model and its approximation [J]. Mathematical Programming, 2019, 174(1): 473-498. |
[1] | 袁柳洋, 汤梦瑶, 迟晓妮. 一类新的无参数的填充打洞函数法[J]. 运筹学学报(中英文), 2025, 29(2): 214-220. |
[2] | 赵娣, 余金, 鲁习文. 单机两代理串行分批排序问题的近似算法[J]. 运筹学学报(中英文), 2025, 29(2): 184-193. |
[3] | 夏远梅, 夏丹丹, 赵克全. 多目标优化的广义Tchebycheff范数标量化[J]. 运筹学学报(中英文), 2025, 29(2): 175-183. |
[4] | 张玉茹, 张雪, 兰茹. 一类线性反问题的变尺度外推硬阈值算法[J]. 运筹学学报(中英文), 2025, 29(2): 158-174. |
[5] | 马素霞, 高岳林, 林洪伟, 张博. 一种新的全局优化无参数填充函数方法[J]. 运筹学学报(中英文), 2025, 29(2): 141-157. |
[6] | 刘欣恬, 朱文兴. 超图平衡二划分的离散迭代优化算法[J]. 运筹学学报(中英文), 2025, 29(2): 128-140. |
[7] | 林浩, 何程. 最小分枝支撑树问题及其在选址问题中的应用[J]. 运筹学学报(中英文), 2025, 29(2): 103-112. |
[8] | 郭思琦, 周萍, 蒋义伟, 季敏. 考虑碳排放成本的计件维护单机调度问题[J]. 运筹学学报(中英文), 2025, 29(2): 68-79. |
[9] | 陈巧, 林惠玲. 广义混合拟变分不等式的间隙函数及其误差界[J]. 运筹学学报(中英文), 2025, 29(2): 44-57. |
[10] | 耿显亚, 柴惠. 完全二部图的Gallai猜想[J]. 运筹学学报(中英文), 2025, 29(1): 232-238. |
[11] | 闫喜红, 唐晓妮. 一种求解低秩矩阵补全的惯性加速交替方向法[J]. 运筹学学报(中英文), 2025, 29(1): 172-184. |
[12] | 杜诗翩, 顾满占. 带机器维护的最小化总误工数期望的随机排序问题研究[J]. 运筹学学报(中英文), 2025, 29(1): 142-158. |
[13] | 李娜, 马冉, 李龙, 张玉忠. 具有学习效应的预制构件生产调度研究[J]. 运筹学学报(中英文), 2025, 29(1): 19-30. |
[14] | 李文杰, 杜智慧, 苏孟龙. 加工时间与运输时间具有一致性的单机NDP约束在线排序问题研究[J]. 运筹学学报(中英文), 2024, 28(4): 18-28. |
[15] | 葛晴, 录岭法, 原晋江, 张利齐. 单机上一个与总完工时间及最大完工时间相关的工件可拒绝的ND双代理排序问题[J]. 运筹学学报(中英文), 2024, 28(4): 66-74. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||