运筹学学报(中英文) ›› 2025, Vol. 29 ›› Issue (3): 160-178.doi: 10.15960/j.cnki.issn.1007-6093.2025.03.008

所属专题: 第九届中国运筹学会科学技术奖获奖者专辑

• 第九届中国运筹学会科学技术奖获奖者专辑 • 上一篇    下一篇

实成对完全正矩阵

周安娃1,*(), 何佳怡1   

  1. 1. 上海大学理学院, 上海 200444
  • 收稿日期:2025-03-07 出版日期:2025-09-15 发布日期:2025-09-09
  • 通讯作者: 周安娃 E-mail:zhouanwa@shu.edu.cn
  • 基金资助:
    国家自然科学基金(12271336)

Real pairwise completely positive matrices

Anwa ZHOU1,*(), Jiayi HE1   

  1. 1. College of Sciences, Shanghai University, Shanghai 200444, China
  • Received:2025-03-07 Online:2025-09-15 Published:2025-09-09
  • Contact: Anwa ZHOU E-mail:zhouanwa@shu.edu.cn

摘要:

本文引入实成对完全正(RPCP)矩阵, 其中一个矩阵必为半正定的, 另一个矩阵必非负, 且该矩阵对具有实成对完全正(RPCP)分解。研究了RPCP矩阵的性质, 给出了矩阵对为RPCP的一些充分和必要条件。首先, 我们给出RPCP矩阵的另一个等价分解。证明了矩阵对(X, X)是RPCP当且仅当X为完全正矩阵。此外, 还证明了RPCP矩阵判定问题等价于可分补全问题。同时, 对于RPCP矩阵判定和分解问题, 提出了一种半定松弛算法。讨论了算法的渐进收敛性和有限收敛性。若矩阵对是RPCP, 算法可进一步给出其一个RPCP分解; 若不是, 算法也能够给出一个判定依据。

关键词: 实成对完全正矩阵, 截断矩问题, 半定松弛

Abstract:

In this paper, we introduce the real pairwise completely positive (RPCP) matrices with one of them is necessarily positive semidefinite while the other one is necessarily entrywise nonnegative, which has a real pairwise completely positive (RPCP) decomposition. We study the properties of RPCP matrices and give some necessary and sufficient conditions for a matrix pair to be RPCP. First, we give an equivalent decomposition for the RPCP matrices, which is different from the RPCP-decomposition and show that the matrix pair (X, X) is RPCP if and only if X is completely positive. Besides, we also prove that the RPCP matrices checking problem is equivalent to the separable completion problem. A semidefinite algorithm is also proposed for detecting whether or not a matrix pair is RPCP. The asymptotic and finite convergence of the algorithm are also discussed. If it is RPCP, we can further give a RPCP-decomposition for it; if it is not, we can obtain a certificate for this.

Key words: real pairwise completely positive matrices, truncated moment problem, semidefinite relaxation

中图分类号: