运筹学学报(中英文) ›› 2025, Vol. 29 ›› Issue (3): 160-178.doi: 10.15960/j.cnki.issn.1007-6093.2025.03.008

• • 上一篇    

实成对完全正矩阵

周安娃*, 何佳怡   

  1. 上海大学理学院, 上海 200444
  • 收稿日期:2025-03-07 发布日期:2025-09-09
  • 通讯作者: 周安娃 E-mail:zhouanwa@shu.edu.cn
  • 基金资助:
    国家自然科学基金(No.12271336)

Real pairwise completely positive matrices

ZHOU Anwa*, HE Jiayi   

  1. College of Sciences, Shanghai University, Shanghai 200444, China
  • Received:2025-03-07 Published:2025-09-09

摘要: 本文引入实成对完全正(RPCP)矩阵,其中一个矩阵必为半正定的,另一个矩阵必非负,且该矩阵对具有实成对完全正(RPCP)分解。研究了RPCP矩阵的性质,给出了矩阵对为RPCP的一些充分和必要条件。首先,我们给出RPCP矩阵的另一个等价分解。证明了矩阵对$(X,X)$是RPCP当且仅当$X$为完全正矩阵。此外,还证明了RPCP矩阵判定问题等价于可分补全问题。同时,对于RPCP矩阵判定和分解问题,提出了一种半定松弛算法。讨论了算法的渐进收敛性和有限收敛性。若矩阵对是RPCP,算法可进一步给出其一个RPCP分解;若不是,算法也能够给出一个判定依据。

关键词: 实成对完全正矩阵, 截断矩问题, 半定松弛

Abstract: In this paper, we introduce the real pairwise completely positive (RPCP) matrices with one of them is necessarily positive semidefinite while the other one is necessarily entrywise nonnegative, which has a real pairwise completely positive (RPCP) decomposition. We study the properties of RPCP matrices and give some necessary and sufficient conditions for a matrix pair to be RPCP. First, we give an equivalent decomposition for the RPCP matrices, which is different from the RPCP-decomposition and show that the matrix pair $(X, X)$ is RPCP if and only if $X$ is completely positive. Besides, we also prove that the RPCP matrices checking problem is equivalent to the separable completion problem. A semidefinite algorithm is also proposed for detecting whether or not a matrix pair is RPCP. The asymptotic and finite convergence of the algorithm are also discussed. If it is RPCP, we can further give a RPCP-decomposition for it; if it is not, we can obtain a certificate for this.

Key words: real pairwise completely positive matrices, truncated moment problem, semidefinite relaxation

中图分类号: