[1] Appel K, Haken W. Every planar map is four colorable. Part I: Discharging [J]. Illinois Journal of Mathematics, 1977, 21(3): 429-490. [2] Appel K, Haken W, Koch J. Every planar map is four colorable. Part II: Reducibility [J]. Illinois Journal of Mathematics, 1977, 21(3): 491-567. [3] Tutte W T. A contribution to the theory of chromatic polynomials [J]. Canadian Journal of Mathematics, 1954, 6: 80-91. [4] Tutte W T. On the algebraic theory of graph colourings [J]. Journal of Combinatorial Theory, 1966, 1(1): 15-50. [5] Bondy J, Murty U. Graph Theory with Applications [M]. New York: Elsevier, 1976. [6] Lai H J, Luo R, Zhang C Q. Integer flows and orientations [M]//Beineke L W, Wilson R J. Topics in Chromatic Graph Theory, Cambridge: Cambridge University Press, 2015: 181-198. [7] Jaeger F. Flows and generalized coloring theorems in graphs [J]. Journal of Combinatorial Theory, Series B, 1979, 26(2): 205-216. [8] Seymour P D. Nowhere-zero 6-flows [J]. Journal of Combinatorial Theory, Series B, 1981, 30(2): 130-135. [9] Fleischner H. Eine gemeinsame basis für die theorie der eulerschen graphen und den Satz von petersen [J]. Monatshefte für Mathematik, 1976, 81: 267-278. [10] Zhang C Q. Integer Flows and Cycle Covers of Graphs [M]. New York: Marcel Dekker, Inc, 1997. [11] Jaeger F. Nowhere-zero flow problems [M]//Beineke L W, Wilson R J. Selected Topics in Graph Theory 3, London: Academic Press, 1988: 71-95. [12] MÖller M, Carstens H G, Brinkmann G. Nowhere-zero flows in low genus graphs [J]. Journal of Graph Theory, 1988, 12(2): 183-190. [13] Celmins U A. On cubic graphs that do not have an edge 3-coloring [D]. Waterloo: University of Waterloo, 1984. [14] Jensen T R. Tutte’s k-flow problems [D]. Denmark: Ordense University, 1985. [15] Kochol M. Reduction of the 5-flow conjecture to cyclically 6-edge-connected snarks [J]. Journal of Combinatorial Theory, Series B, 2004, 90(1): 139-145. [16] Kochol M. Decomposition formulas for the flow polynomial [J]. European Journal of Combinatorics, 2005, 26(7): 1086-1093. [17] Kochol M. Restrictions on smallest counterexamples to the 5-flow conjecture [J]. Combinatorica, 2006, 26: 83-89. [18] Kochol M. Smallest counterexample to the 5-flow conjecture has girth at least eleven [J]. Journal of Combinatorial Theory, Series B, 2010, 100(4): 381-389. [19] Korcsok P. Minimal counterexamples to flow conjectures [D]. Prague: Charles University, 2015. [20] Mazzuoccolo G, Steffen E. Nowhere-zero 5-flows on cubic graphs with oddness 4[J]. Journal of Graph Theory, 2017, 85(2): 363-371. [21] Steffen E. Tutte’s 5-flow conjecture for highly cyclically connected cubic graphs [J]. Discrete Mathematics, 2010, 310(3): 385-389. [22] Steffen E. Tutte’s 5-flow conjecture for graphs of nonorientable genus 5[J]. Journal of Graph Theory, 1996, 22(4): 309-319. [23] Erdos P, Sachs H. Regulare graphen gegebener taillenweite mit minimaler knotenzahl [J]. Wissenschaftliche Zeitschrift/Martin-Luther-Universitat, Halle-Wittenberg Mathematischnaturwissenschaftliche Reihe, 1963, 12: 251-257. [24] Balaban A T. A trivalent graph of girth ten [J]. Journal of Combinatorial Theory, Series B, 1972, 12(1): 1-5. [25] McKay B, Myrvold W, Nadon J. Fast backtracking principles applied to find new cages [C]//Proccedings of 9th Annual ACM-SIAM Symposium on Discrete Algorithms, 1998: 188- 191. [26] Steinberg K. Tutte’s 5-flow conjecture for the projective plane [J]. Journal of Graph Theory, 1984, 8: 277-285. [27] Youngs J W T. Minimal imbeddings and the genus of a graph [J]. Journal of Mathematics and Mechanics, 1963, 12(2): 303-315. |