| 1 | Brückner M, Scheffer T. Stackelberg games for adversarial prediction problems[C]//Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2011: 547-555. | 
																													
																						| 2 | ZhouY,KantarciogluM,XiB.A survey of game theoretic approach for adversarial machine learning[J].Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,2019,20(3):e1259. | 
																													
																						| 3 | Shokri R, Theodorakopoulos G, Troncoso C, et al. Protecting location privacy: Optimal strategy against localization attacks[C]//Proceedings of the 2012 ACM Conference on Computer and Communications Security, 2012: 617-627. | 
																													
																						| 4 | Balcan M-F, Blum A, Haghtalab N, et al. Commitment without regrets: Online learning in Stackelberg security games[C]//Proceedings of the 16th ACM Conference on Economics and Computation, 2015: 61-78. | 
																													
																						| 5 | Zhou Y, Kantarcioglu M. Modeling adversarial learning as nested Stackelberg games[C]//Proceedings, Part Ⅱ, of the 20th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, 2016: 350-362. | 
																													
																						| 6 | WahabO A,BentaharJ,OtrokH,et al.A Stackelberg game for distributed formation of business-driven services communities[J].Expert Systems with Applications,2016,45,359-372. doi: 10.1016/j.eswa.2015.09.047
 | 
																													
																						| 7 | Bishop N, Tran-Thanh L, Gerding E. Optimal learning from verified training data[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems, 2020: 9520-9529. | 
																													
																						| 8 | JeroslowR G.The polynomial hierarchy and a simple model for competitive analysis[J].Mathematical Programming,1985,32(2):146-164. doi: 10.1007/BF01586088
 | 
																													
																						| 9 | Wang J, Chen H, Jiang R, et al. Fast algorithms for Stackelberg prediction game with least squares loss[C]//Proceedings of the 38th International Conference on Machine Learning, 2021: 10708-10716. | 
																													
																						| 10 | Wang J, Huang W, Jiang R, et al. Solving Stackelberg prediction game with least squares loss via spherically constrained least squares reformulation[C]//Proceedings of the 39th International Conference on Machine Learning, 2022: 22665-22679. | 
																													
																						| 11 | GouldN I M,LucidiS,RomaM,et al.Solving the trust-region subproblem using the Lanczos method[J].SIAM Journal on Optimization,1999,9(2):504-525. doi: 10.1137/S1052623497322735
 | 
																													
																						| 12 | Carmon Y, Duchi J C. Analysis of krylov subspace solutions of regularized non-convex quadratic problems[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems, 2018: 10728-10738. | 
																													
																						| 13 | ZhangL-H,ShenC.A nested Lanczos method for the trust-region subproblem[J].SIAM Journal on Scientific Computing,2018,40(4):A2005-A2032. doi: 10.1137/17M1145914
 | 
																													
																						| 14 | Pedregosa F. Hyperparameter optimization with approximate gradient[C]//Proceedings of the 33rd International Conference on Machine Learning, 2016: 737-746. | 
																													
																						| 15 | Franceschi L, Donini M, Frasconi P, et al. Forward and reverse gradient-based hyperparameter optimization[C]//Proceedings of the 34th International Conference on Machine Learning, 2017: 1165-1173. | 
																													
																						| 16 | Ghadimi S, Wang M. Approximation methods for bilevel programming[EB/OL]. [2024-12-16] arXiv: 1802.02246. | 
																													
																						| 17 | Shaban A, Cheng C-A, Hatch N, et al. Truncated back-propagation for bilevel optimization[C]//Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics, 2019: 1723-1732. | 
																													
																						| 18 | Grazzi R, Franceschi L, Pontil M, et al. On the iteration complexity of hypergradient computation[C]//Proceedings of the 37 $th International Conference on Machine Learning, 2020: 3748-3758. | 
																													
																						| 19 | Ji K, Yang J, Liang Y. Bilevel optimization: Convergence analysis and enhanced design[C]//Proceedings of the 38th International Conference on Machine Learning, 2021: 4882-4892. | 
																													
																						| 20 | Ji K, Liu M, Liang Y, et al. Will bilevel optimizers benefit from loops[C]//Proceedings of the 36th International Conference on Neural Information Processing Systems, 2022: 3011-3023. | 
																													
																						| 21 | Domke J. Generic methods for optimization-based modeling[C]//Proceedings of the 15th International Conference on Artificial Intelligence and Statistics, 2012: 318-326. | 
																													
																						| 22 | Ji K, Lee J D, Liang Y, et al. Convergence of meta-learning with task-specific adaptation over partial parameters[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems, 2020: 11490-11500. | 
																													
																						| 23 | ConnA R,GouldN I M,TointP L.Trust Region Methods[M].Philadelphia:SIAM,2000. | 
																													
																						| 24 | ShermanJ,MorrisonW J.Adjustment of an inverse matrix corresponding to a change in one element of a given matrix[J].The Annals of Mathematical Statistics,1950,21(1):124-127. doi: 10.1214/aoms/1177729893
 | 
																													
																						| 25 | NesterovY.Lectures on Convex Optimization[M].Switzerland:Springer,2018. | 
																													
																						| 26 | JorgeN,StephenW J.Numerical Optimization[M].Heidelberg:Springer,2006. |