运筹学学报(中英文) ›› 2025, Vol. 29 ›› Issue (3): 93-123.doi: 10.15960/j.cnki.issn.1007-6093.2025.03.005

• • 上一篇    

斯塔克尔伯格预测博弈问题的非精确超梯度法

石旭1, 王玖鳞2, 江如俊1*, 宋维正3   

  1. 1. 复旦大学大数据学院, 上海 200433;
    2. 南开大学数学科学学院, 天津 300071;
    3. 复旦大学数学科学学院, 上海 200433
  • 收稿日期:2025-02-22 发布日期:2025-09-09
  • 通讯作者: 江如俊 E-mail:rjjiang@fudan.edu.cn
  • 基金资助:
    国家自然科学基金(No.12171100)

Solving Stackelberg prediction games using inexact hyper-gradient methods

SHI Xu1, WANG Jiulin2, JIANG Rujun1*, SONG Weizheng3   

  1. 1 School of Data Science, Fudan University, Shanghai 200433, China;
    2 School of Mathematical Sciences, Nankai University, Tianjin 300071, China;
    3 School of Mathematical Sciences, Fudan University, Shanghai 200433, China
  • Received:2025-02-22 Published:2025-09-09

摘要: 斯塔克尔伯格预测博弈是一种双层优化框架,旨在建模学习者与追随者之间的交互。现有方法在处理具有一般损失函数的问题时,计算代价高昂且方法较少。为了解决这一挑战,我们提出了一种结合热启动策略的全新的基于超梯度的方法。具体而言,我们首先采用基于泰勒展开的方法来获取一个良好的初始点,然后利用具有显式近似超梯度的超梯度下降方法对问题进行求解。我们从理论上证明了该算法的收敛性。此外,当追随者采用最小二乘损失函数时,我们的方法仅通过求解二次子问题即可达到$\varepsilon$-稳定点。数值实验表明,与当前最先进的方法相比,我们的算法在时间上快了若干个数量级。

关键词: 斯塔克尔伯格预测博弈, 近似超梯度, 双层优化

Abstract: The Stackelberg prediction game (SPG) is a bilevel optimization framework for modeling strategic interactions between a learner and a follower. Existing methods for solving this problem with general loss functions are computationally expensive and scarce. We propose a novel hyper-gradient type method with a warm-start strategy to address this challenge. Particularly, we first use a Taylor expansion-based approach to obtain a good initial point. Then we apply a hyper-gradient descent method with an explicit approximate hyper-gradient. We establish the convergence results of our algorithm theoretically. Furthermore, when the follower employs the least squares loss function, our method is shown to reach an ε-stationary point by solving quadratic subproblems. Numerical experiments show our algorithms are empirically orders of magnitude faster than the state-of-the-art.

Key words: Stackelberg prediction game, approximate hyper-gradient, bilevel optimization

中图分类号: