运筹学学报(中英文) ›› 2025, Vol. 29 ›› Issue (3): 93-123.doi: 10.15960/j.cnki.issn.1007-6093.2025.03.005

所属专题: 第九届中国运筹学会科学技术奖获奖者专辑

• 第九届中国运筹学会科学技术奖获奖者专辑 • 上一篇    下一篇

斯塔克尔伯格预测博弈问题的非精确超梯度法

石旭1, 王玖鳞2, 江如俊1,*(), 宋维正3   

  1. 1. 复旦大学大数据学院, 上海 200433
    2. 南开大学数学科学学院, 天津 300071
    3. 复旦大学数学科学学院, 上海 200433
  • 收稿日期:2025-02-22 出版日期:2025-09-15 发布日期:2025-09-09
  • 通讯作者: 江如俊 E-mail:rjjiang@fudan.edu.cn
  • 基金资助:
    国家自然科学基金(12171100)

Solving Stackelberg prediction games using inexact hyper-gradient methods

Xu SHI1, Jiulin WANG2, Rujun JIANG1,*(), Weizheng SONG3   

  1. 1. School of Data Science, Fudan University, Shanghai 200433, China
    2. School of Mathematical Sciences, Nankai University, Tianjin 300071, China
    3. School of Mathematical Sciences, Fudan University, Shanghai 200433, China
  • Received:2025-02-22 Online:2025-09-15 Published:2025-09-09
  • Contact: Rujun JIANG E-mail:rjjiang@fudan.edu.cn

摘要:

斯塔克尔伯格预测博弈是一种双层优化框架, 旨在建模学习者与追随者之间的交互。现有方法在处理具有一般损失函数的问题时, 计算代价高昂且方法较少。为了解决这一挑战, 我们提出了一种结合热启动策略的全新的基于超梯度的方法。具体而言, 我们首先采用基于泰勒展开的方法来获取一个良好的初始点, 然后利用具有显式近似超梯度的超梯度下降方法对问题进行求解。我们从理论上证明了该算法的收敛性。此外, 当追随者采用最小二乘损失函数时, 我们的方法仅通过求解二次子问题即可达到$\varepsilon$-稳定点。数值实验表明, 与当前最先进的方法相比, 我们的算法在时间上快了若干个数量级。

关键词: 斯塔克尔伯格预测博弈, 近似超梯度, 双层优化

Abstract:

The Stackelberg prediction game (SPG) is a bilevel optimization framework for modeling strategic interactions between a learner and a follower. Existing methods for solving this problem with general loss functions are computationally expensive and scarce. We propose a novel hyper-gradient type method with a warm-start strategy to address this challenge. Particularly, we first use a Taylor expansion-based approach to obtain a good initial point. Then we apply a hyper-gradient descent method with an explicit approximate hyper-gradient. We establish the convergence results of our algorithm theoretically. Furthermore, when the follower employs the least squares loss function, our method is shown to reach an ε-stationary point by solving quadratic subproblems. Numerical experiments show our algorithms are empirically orders of magnitude faster than the state-of-the-art.

Key words: Stackelberg prediction game, approximate hyper-gradient, bilevel optimization

中图分类号: