[1] Marzouk O A. Summary of the 2023 report of TCEP (tracking clean energy progress) by the international energy agency (IEA), and proposed process for computing a single aggregate rating [C]//E3S Web of Conferences, 2025, 601: 00048. [2] 中国信息通信研究院. 中国绿色算力发展研究报告(2024年)[R]. 北京: 中国信息通信研究院, 2024. [3] 蚂蚁集团. 蚂蚁集团2021年可持续发展报告[R]. 杭州: 蚂蚁集团, 2022. [4] 蚂蚁集团, 中国信通院. 面向算力应用环节的计算绿色化白皮书[R]. 杭州: 蚂蚁集团, 2023. [5] 蚂蚁集团. 蚂蚁集团2023年可持续发展报告[R]. 杭州: 蚂蚁集团, 2024. [6] Arshad M, Hellerstein J L, Evers C T. A survey of auto-scaling techniques for elastic applications in cloud computing [J]. IEEE Transactions on Network and Service Management, 2018, 15(1): 36-52. [7] Khan S A, Ahmad I, Madria S. Resource provisioning in cloud computing environments: A survey [J]. ACM Computing Surveys, 2014, 46(4): 1-36. [8] Aslam A M, Jaur M. A review on energy efficient technique in green cloud: Open research challenges and issues [J]. International Journal on Scientific Research in Computer Science and Engineering, 2018, 6(3): 44-50. [9] Yang Z, Qin X, Li W, et al. Optimized task scheduling and resource allocation in cloud computing using PSO based fitness function [J]. Information Technology Journal, 2013, 12(23): 7090. [10] Zhao G. Cost-aware scheduling algorithm based on PSO in cloud computing environment [J]. International Journal of Grid & Distributed Computing, 2014, 7: 33-42. [11] Ghamkhari M, Mohsenian-Rad H. Optimal integration of renewable energy resources in data centers with behind-the-meter renewable generator [C]//Proceedings of the 2012 IEEE International Conference on Communications, 2012. [12] Beloglazov A, Buyya R. Energy efficient allocation of virtual machines in cloud data centers [C]//Proceedings of the 201010th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing, 2010: 577-578. [13] Huang J, Wu K, Moh M. Dynamic virtual machine migration algorithms using enhanced energy consumption model for green cloud data centers [C]//Proceedings of the 2014 International Conference on High Performance, 2014. [14] Dupont C, Schulze T, Giuliani G, et al. An energy aware framework for virtual machine placement in cloud federated data centres [C]//Proceedings of the 3rd International Conference on Future Energy Systems: Where Energy, Computing and Communication Meet, 2012: 1-10. [15] Copil G, Moldovan D, Salomie I, et al. Cloud SLA negotiation for energy saving|A particle swarm optimization approach [C]//Proceedings of the 2012 IEEE 8th International Conference on Intelligent Computer Communication and Processing, 2012. [16] Kavitha K, Kumuthini C. Energy efficient computing strategies for green cloud [J]. Tuijin Jishu/Journal of Propulsion Technology, 2023, 44(6): 6009-6016. [17] Valancius V, Laoutaris N, Massoulié L, et al. Greening the internet with NanoData Centers [C]//Proceedings of the 2009 CoNEXT Conference, 2009: 1-12. [18] Chen G, He W, Liu J, et al. Energy-aware server provisioning and load dispatching for connection-intensive internet services [C]//Proceedings of the 5th USENIX Symposium on Networked Systems Design and Implementation, 2008: 337-350. [19] Shu W, Wang W, Wang Y. A novel energy-efficient resource allocation algorithm based on immune clonal optimization for green cloud computing [J]. EURASIP Journal on Wireless Communications and Networking, 2014, 2014: 64. [20] Liu Y, Shu W, Zhang C. A parallel task scheduling optimization algorithm based on clonal operator in green cloud computing [J]. Journal of Communications, 2016, 11: 185-191. [21] Dhingra A. Green cloud: Smart resource allocation and optimization using simulated annealing technique [J]. Indian Journal of Computer Science and Engineering, 2014, 5(2): 1-10. [22] Okewu E, Misra S, Maskelijnas R, et al. Optimizing green computing awareness for environmental sustainability and economic security as a stochastic optimization problem [J]. Sustainability, 2017, 9(10): 1857. [23] Garg S K, Yeo C S, Anandasivam A, et al. Environment-conscious scheduling of HPC applications on distributed cloud-oriented data centers [J]. Journal of Parallel and Distributed Computing, 2011, 71: 732-749. [24] Zhang L M, Li K, Zhang Y Q. Green task scheduling algorithms with speeds optimization on heterogeneous cloud servers [C]//Proceedings of the 2010 IEEE/ACM Int’l Conference on Green Computing and Communications & Int’I Conference on Cyber, Physical and Social Computing, 2010: 76-80. [25] Borgetto D, Casanova H, Da Costa G, et al. Energy-aware service allocation [J]. Future Generation Computer Systems, 2012, 28(5): 769-779. [26] Cabrera G, Pérez-Rosés H, Juan A A, et al. Operations research in green internet computing: State of the art and open challenges [J]. International Journal of Production Research, 2013. [27] Zou D, Lu W, Zhu Z, et al. OptScaler: A collaborative framework for robust autoscaling in the cloud [J]. Proceedings of the VLDB Endowment, 2024, 17(12): 4090-4103. [28] Dong H, Wang B, Qiao B, et al. Predictive job scheduling under uncertain constraints in cloud computing [C]//Proceedings of the 30th International Joint Conference on Artificial Intelligence, 2021: 3627-3634. [29] Qiao B, Yang F, Luo C, et al. Intelligent container reallocation at Microsoft 365[C]//Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, 2021: 1438-1443. [30] Lu X, Liu Z, Guan Y, et al. GreenFlow: A computation allocation framework for building environmentally sound recommendation system [C]//Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, 2023: 6103-6111. [31] Rzadca K, Findeisen P, Swiderski J, et al. Autopilot: Workload autoscaling at Google [C]//Proceedings of the Fifteenth European Conference on Computer Systems, 2020: 1-16. [32] Zou D, Lian J, Lu W, et al. An equally-split bin packing problem [C]//Proceedings of International Conference on Combinatorial Optimization and Applications, 2025: 240-252. [33] Hart P E, Nilsson N J, Raphael B. A formal basis for the heuristic determination of minimum cost paths [J]. IEEE Transactions on Systems Science and Cybernetics, 1968, 4(2): 100-107. [34] Christophere B. Model predictive control: Principles and case studies [M]//Model Predictive Control: Theory and Application, Oxford: Oxford University Press, 1995. [35] Shahrad M, Fonseca R, Goiri I, et al. Serverless in the wild: characterizing and optimizing the serverless workload at a large cloud provider [C]//Proceedings of the 2020 USENIX Annual Technical Conference, 2020: 205-218. [36] JV B B, Dharma D. HAS: Hybrid auto-scaler for resource scaling in cloud environment [J]. Journal of Parallel and Distributed Computing, 2018, 120: 1-15. [37] Tianchi. Alibaba data center resource management and scheduling dataset [EB/OL]. [2025- 03-01]. https://tianchi.aliyun.com/dataset/dataDetail?datald=6287. [38] Mommessin C, Yang R, Shakhlevich N V, et al. Affinity-aware resource provisioning for longrunning applications in shared clusters [J]. Journal of Parallel and Distributed Computing, 2023, 177: 1-16. [39] Cole D. Data center energy efficiency|looking beyond PUE [R]. No Limits Software, White Paper, 2011. [40] Delage E, Ye Y. Distributionally robust optimization under moment uncertainty with application to data-driven problems [J]. Operations Research, 2010, 58(3): 595-612. [41] Chen M, Xu Z, Wang Y, et al. Deep reinforcement learning for large-scale logistics scheduling [C]//Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2020: 3452-3461. [42] Zhang Y, Liu Q, Wu J, et al. Multi-agent deep reinforcement learning for power grid dispatch with high renewable penetration [J]. IEEE Transactions on Sustainable Energy, 2022, 13(3): 1457-1469. [43] Tang H, Liu J, Zhou Z, et al. Graph reinforcement learning for ride-hailing order dispatching [C]//Proceedings of the 35th AAAI Conference on Artificial Intelligence, 2021: 12361-12369. |