1 |
WangC,WangX,ZhangC,et al.Geometric correction based color image watermarking using fuzzy least squares support vector machine and Bessel K form distribution[J].Signal Process,2017,134,197-208.
doi: 10.1016/j.sigpro.2016.12.010
|
2 |
ZhuJ,RossetS,HastieT,et al.1-norm Support Vector Machines[J].Advances in Neural Information Processing Systems,2004,16,49-56.
|
3 |
Tong S, Chang E. Support vector machine active learning for image retrieval[C]//ACM International Conference on Multimedia, 2001: 107-118.
|
4 |
Adalbjornsson,Stefan,Ingi,et al.Group-sparse regression using the covariance fitting criterion[J].Signal Process,2017,139,116-130.
doi: 10.1016/j.sigpro.2017.03.025
|
5 |
MateosG,BazerqueJ A,GiannakisG B,et al.Distributed sparse linear regression[J].IEEE Transactions on Signal Processing,2010,58(10):5262-5276.
doi: 10.1109/TSP.2010.2055862
|
6 |
PlanY,VershyninR.Robust 1-bit compressed sensing and sparse logistic regression: a convex programming approach[J].IEEE Transactions on Information Theory,2013,59(1):482-494.
doi: 10.1109/TIT.2012.2207945
|
7 |
ShamirO.A stochastic PCA and SVD algorithm with an exponential convergence rate[J].Mathematics,2015,37,144-152.
|
8 |
Garber D, Hazan E, Jin C, et al. Faster eigenvector computation via shift-and-invert preconditioning[C]//International Conference on Machine Learning, 2016: 2626-2634.
|
9 |
Allen-Zhu Z. Katyusha: The first direct acceleration of stochastic gradient methods[C]//Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, 2017: 1200-1205.
|
10 |
BeckA,TeboulleM.A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J].SIAM Journal on Imaging Sciences,2009,2(1):183-202.
doi: 10.1137/080716542
|
11 |
BeckA,TeboulleM.Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems[J].IEEE Transactions on Image Processing,2009,18(11):2419-2434.
doi: 10.1109/TIP.2009.2028250
|
12 |
NesterovY.Gradient methods for minimizing composite objective function[J].Center for Operations Research and Econometrics,2007,140(1):125-161.
|
13 |
NesterovY.Smooth minimization of non-smooth functions[J].Center for Operations Research and Econometrics,2005,103(1):127-152.
|
14 |
BottouL.Stochastic gradient descent tricks[J].Neural Networks, Tricks of the Trade, Reloaded,2012,7700,421-436.
|
15 |
KleinS,PluimJ P W,StaringM,et al.Adaptive stochastic gradient descent optimisation for image registration[J].Internation Journal of Computer Vision,2009,81(3):227-239.
doi: 10.1007/s11263-008-0168-y
|
16 |
Tsuruoka Y, Tsujii J, Ananiadou S, et al. Stochastic gradient descent training for $l_1$-regularized log-linear models with cumulative penalty[C]//Joint Conference of the Meeting of the ACL and the International Joint Conference on Natural Language Processing of the AFNLP, 2009: 477-485.
|
17 |
Zhang T. Solving large scale linear prediction problems using stochastic gradient descent algorithms[C]//International Conference on Machine learning, 2004: 919-926.
|
18 |
NesterovY.Introductory Lectures on Convex Optimization: A Basic Course[M].New York:Springer,2004.
|
19 |
GhadimiS,LanG.Optimal stochastic approximation algorithms for strongly convex stochastic composite optimization, Ⅱ: A generic algorithmic framework[J].Society for Industrial and Applied Mathematics,2012,22(4):1469-1492.
|
20 |
Shalev-Shwartz S, Zhang T. Accelerated proximal stochastic dual coordinate ascent for regularized loss minimization[C]//International Conference on Machine Learning, 2014: 64-72.
|
21 |
Shalev-Shwartz S, Zhang T. Proximal stochastic dual coordinate ascent[EB/OL]. (2012-11-12)[2023-06-28]. arXiv: 1211.2717.
|
22 |
Shalev-ShwartzS,ZhangT.Stochastic dual coordinate ascent methods for regularized loss minimization[J].Journal of Machine Learning Research,2013,14,567-599.
|
23 |
Nitanda A. Stochastic proximal gradient descent with acceleration techniques[C]//Advances in Neural Information Processing Systems, 2014: 1574-1582.
|
24 |
XiaoL,ZhangT.A proximal stochastic gradient method with progressive variance reduction[J].SIAM journal on optimization,2014,24(4):2057-2075.
doi: 10.1137/140961791
|
25 |
RobbinH,MonroS.A stochastic approximation method[J].Annals of Mathematical Statistics,1951,22,400-407.
doi: 10.1214/aoms/1177729586
|
26 |
DuchiJ,HazanE,SingerY,et al.Adaptive subgradient methods for online learning and stochastic optimization[J].Journal of Machine Learning Research,2011,12(7):257-269.
|
27 |
Kingma D P, Ba J. Adam: A method for stochastic optimization[EB/OL]. (2017-01-30)[2023-06-28]. arXiv: 1412.6980.
|
28 |
BarzilaiJ,BorweinJ M.Two-point step size gradient methods[J].IMA Journal on Numerical Analysis,1988,8(1):141-148.
|
29 |
ZhouB,GaoL,DaiY H,et al.Gradient methods with adaptive step-sizes[J].Computational Optimization and Applications,2006,35(1):69-86.
|
30 |
DaiY H,FletcherR.Projected Barzilai-Borweinmethods for large-scale box-constrained quadratic programming[J].Numerische Mathematik,2005,100(1):21-47.
|
31 |
TanC,MaS,DaiY H,et al.Barzilai-Borwein step size for stochastic gradient descent[J].Advances in Neural Information Processing Systems,2016,29,685-693.
|
32 |
PolyakB T.Introduction to Optimization[M].New York:Chapman and Hall,1987.
|
33 |
李蝶. 基于Polyak步长的方差缩减算法[D]. 天津: 河北工业大学, 2021.
|