| 1 |
Sterna M . A survey of scheduling problems with late work criteria[J]. Omega, 2011, 39 (2): 120- 129.
doi: 10.1016/j.omega.2010.06.006
|
| 2 |
Błażewicz J . Scheduling preemptible tasks on parallel processors with information loss[J]. Technique et Science Informatiques, 1984, 3 (6): 415- 420.
|
| 3 |
Sterna M , Czerniachowska K . Polynomial time approximation scheme for two parallel machines scheduling with a common due date to maximize early work[J]. Journal of Optimization Theory and Applications, 2017, 174 (3): 927- 944.
doi: 10.1007/s10957-017-1147-7
|
| 4 |
Sterna M . Late and early work scheduling: A survey[J]. Omega, 2021, 104, 102453.
doi: 10.1016/j.omega.2021.102453
|
| 5 |
Chen X , Wang W , Xie P , et al. Exact and heuristic algorithms for scheduling on two identical machines with early work maximization[J]. Computers & Industrial Engineering, 2020, 144, 106449.
|
| 6 |
Jiang Y , Guan L , Zhang K , et al. A note on scheduling on two identical machines with early work maximization[J]. Computers & Industrial Engineering, 2021, 153, 107091.
|
| 7 |
周萍, 季敏, 蒋义伟. 极大化提前完工总量平行机排序问题的LPT算法[J]. 运筹学学报, 2022, 26 (3): 151- 156.
doi: 10.15960/j.cnki.issn.1007-6093.2022.03.012
|
| 8 |
Chen X , Liang Y , Sterna M , et al. Fully polynomial time approximation scheme to maximize early work on parallel machines with common due date[J]. European Journal of Operational Research, 2020, 284 (1): 67- 74.
doi: 10.1016/j.ejor.2019.12.003
|
| 9 |
Li W . Improved approximation schemes for early work scheduling on identical parallel machines with a common due date[J]. Journal of the Operations Research Society of China, 2024, 12, 341- 350.
|
| 10 |
Györgyi P , Kis T . A common approximation framework for early work, late work, and resource leveling problems[J]. European Journal of Operational Research, 2020, 286 (1): 129- 137.
doi: 10.1016/j.ejor.2020.03.032
|
| 11 |
Chen X , Sterna M , Han X , et al. Scheduling on parallel identical machines with late work criterion: Offline and online cases[J]. Journal of Scheduling, 2016, 19 (6): 729- 736.
|
| 12 |
Chen X , Kovalev S , Liu Y , et al. Semi-online scheduling on two identical machines with a common due date to maximize total early work[J]. Discrete Applied Mathematics, 2021, 290, 71- 78.
doi: 10.1016/j.dam.2020.05.023
|
| 13 |
Xiao M, Liu X, Li W. Semi-online early work maximization problem on two hierarchical machines with partial information of processing time[C]//International Conference on Algorithmic Applications in Management. Dallas: Springer, 2021: 146-156.
|
| 14 |
Xiao M, Liu X, Li W, et al. Online and semi-online scheduling on two hierarchical machines with a common due date to maximize the total early work[EB/OL]. [2023-01-01]. arXiv: 2209.08704.
|
| 15 |
Xiao M, Bai X, Li W. Online early work maximization problem on two hierarchical machines with buffer or rearrangements[C]//International Conference on Algorithmic Applications in Management. Cham: Springer, 2022: 46-54.
|