运筹学学报(中英文) ›› 2025, Vol. 29 ›› Issue (2): 128-140.doi: 10.15960/j.cnki.issn.1007-6093.2025.02.010

• 论文 • 上一篇    下一篇

超图平衡二划分的离散迭代优化算法

刘欣恬1, 朱文兴2,*()   

  1. 1. 福州大学数学与统计学院, 福建福州 350116
    2. 福州大学离散数学与理论计算机科学研究中心, 福建福州 350116
  • 收稿日期:2022-04-19 出版日期:2025-06-15 发布日期:2025-06-12
  • 通讯作者: 朱文兴 E-mail:wxzhu@fzu.edu.com
  • 基金资助:
    国家自然科学基金(62174033)

A discrete iterative method for hypergraph bananced bi-partitioning

Xintian LIU1, Wenxing ZHU2,*()   

  1. 1. School of Mathematics and Statistics, Fuzhou University, Fuzhou 350116, Fujian, China
    2. Center for Discrete Mathematics and Theoretical Computer Science, Fuzhou University, Fuzhou 350116, Fujian, China
  • Received:2022-04-19 Online:2025-06-15 Published:2025-06-12
  • Contact: Wenxing ZHU E-mail:wxzhu@fzu.edu.com

摘要:

超图平衡二划分是超大规模集成电路物理设计的重要一环。Kernighan-Lin算法和Fiduccia-Mattheyses算法等迭代优化算法是求解该NP-困难问题的常用方法。然而, 这些算法具有以下缺点: 一是对于较差的初始解, 算法容易陷入局部最优。二是由于平衡条件的约束, 顶点的移动受到诸多限制。针对上述问题, 本文将超图平衡二划分问题转化为0-1规划问题, 并设计了求解该问题的离散迭代算法, 在一定程度上克服了传统的迭代算法受平衡条件与初始解约束的缺点。在ISPD98电路划分测试样例上, 本文的算法取得了比Fiduccia-Mattheyses算法质量更高的解。在20次随机实验中, 本文的平均割边数比Fiduccia-Mattheyses算法少13.2%。将本文的结果作为Fiduccia-Mattheyses算法的初始解作进一步优化, 所产生的平均割边数比Fiduccia-Mattheyses算法少30.1%。不仅如此, 本文的算法还可以嵌入到多级划分算法框架中, 取得的平均割边数比multilevel partitioning (MLPart) 少3.6%。

关键词: 超图, 平衡二划分, 最小割, 0-1规划

Abstract:

The problem of hypergraph balanced bipartitioning has become a vital part of very large scale integration circuit physical design. Iterative methods such as Kernighan-Lin and Fiduccia-Mattheyses heuristics have been used to solve this NP-hard problem and perform well. However, these methods have some disadvantages as follows. First, an initial solution of poor quality will easily get trapped in bad local optima. Second, the movement of vertices is restricted to balanced partition. To resolve these issues, we transform the hypergraph bi-partitioning problem into a 0-1 programming. Then an iterative algorithm is designed to solve the problem, which overcomes the shortcomings of traditional iterative algorithms. Our algorithm performs better than Fiduccia-Mattheyses on the ISPD98 hypergraph partitioning benchmarks. Our results have an average improvement of 13.2% over Fiduccia-Mattheyses. If taking our results as initial solutions of the Fiduccia-Mattheyses heuristic, the average cut count is reduced by 30.1%. Moreover, our algorithm can be incorporated into a multilevel partitioning framework, and the partition result has an average improvement of 3.6%.

Key words: hypergraph, balanced bipartitioning, min-cut, 0-1 programming

中图分类号: