运筹学学报 ›› 2022, Vol. 26 ›› Issue (4): 119-126.doi: 10.15960/j.cnki.issn.1007-6093.2022.04.010

• • 上一篇    

基于电网络技巧计数一类平面自相似图的生成树数目

赵伟良*, 齐林明   

  1. 浙江工业职业技术学院, 浙江绍兴 312000
  • 收稿日期:2019-11-27 发布日期:2022-11-28
  • 通讯作者: 赵伟良 E-mail:zwlzjipc@163.com
  • 基金资助:
    浙江省教育厅2018年度高校访问学者"教师专业发展项目" (No. FX2018113)

Counting the spanning trees for a class of self-similar planar graphs based on techniques from electrical networks

ZHAO Weiliang*, QI Linming   

  1. Zhejiang Industry Polytechnic College, Shaoxing 312000, Zhejiang, China
  • Received:2019-11-27 Published:2022-11-28

摘要: Sierpiński多面体是Sierpiński三角形的三维近似, Sierpiński金字塔自相似图是Sierpiński四面体的1-骨架。本文受Sierpiński金字塔图的构造启发, 研究一类构造上极为相似的平面自相似图。基于图的自相似性特点和电网络理论技巧, 得到这类自相似图的生成树的计数公式及生成树增长的熵值。

关键词: Sierpiński三角形, 生成树, 自相似, 电网络等价, 熵值

Abstract: The Sierpiński gasket pyramid networks are the sketches of the Sierpiński tetrahedra which are the three-dimensional analogue of the Sierpiński triangles. Motivated by the construction of Sierpiński gasket pyramid networks, in this work we study the spanning trees of a new class of self-similar planar networks which has a very similar iterative generating method. By using the self-similarity and employing techniques from electrical networks, we obtain the exact analytical expression for the number of spanning trees of this kind of planar networks as well as the entropy of spanning trees.

Key words: Sierpiński triangle, spanning tree, self-similar, electrically equivalent, entropy

中图分类号: