| 1 | 
																						 
											   Aloise D ,  Deshpande A ,  Hansen P , et al.  NP-hardness of Euclidean sum-of-squares clustering[J]. Machine Learning, 2009, 75, 245- 248. 
											 												 
																									doi: 10.1007/s10994-009-5103-0
																																			 											 | 
										
																													
																						| 2 | 
																						 
											   Drineas P ,  Frieze A ,  Kannan R , et al.  Clustering large graphs via the singular value decomposition[J]. Machine Learning, 2004, 56, 9- 33. 
											 												 
																									doi: 10.1023/B:MACH.0000033113.59016.96
																																			 											 | 
										
																													
																						| 3 | 
																						 
											 Awasthi P, Charikar M, Krishnaswamy R, et al. The hardness of approximation of Euclidean k-means[C]//Proceedings of SoCG, 2015: 754-767.
											 											 | 
										
																													
																						| 4 | 
																						 
											 Bachem O, Lucic M, Hassani S H, et al. Approximate k-means++ in sublinear time[C]//Proceedings of AAAI, 2016: 1459-1467.
											 											 | 
										
																													
																						| 5 | 
																						 
											 Blömer J, Lammersen C, Schmidt M, et al. Theoretical analysis of the k-means algorithm|A survey[M]//Algorithm Engineering|Selected Results and Surveys, Cham: Springer, 2016: 81-116.
											 											 | 
										
																													
																						| 6 | 
																						 
											   Kanungo T ,  Mount D M ,  Netanyahu N S , et al.  A local search approximation algorithm for k-means clustering[J]. Computational Geometry: Theory and Applications, 2004, 28, 89- 112. 
											 												 
																									doi: 10.1016/j.comgeo.2004.03.003
																																			 											 | 
										
																													
																						| 7 | 
																						 
											   Lee E ,  Schmidt M ,  Wright J .  Improved and simplified inapproximability for k-means[J]. Information Processing Letters, 2017, 120, 40- 43. 
											 												 
																									doi: 10.1016/j.ipl.2016.11.009
																																			 											 | 
										
																													
																						| 8 | 
																						 
											   Xu D ,  Xu Y ,  Zhang D .  A survey on algorithm for k-means problem and its variants[J]. Operations Research Transactions, 2017, 21, 101- 109.
											 											 | 
										
																													
																						| 9 | 
																						 
											 Ahmadian S, Norouzi-Fard A, Svensson O, et al. Better guarantees for k-means and Euclidean k-median by primal-dual algorithms[C]//Proceedings of FOCS, 2017: 61-72.
											 											 | 
										
																													
																						| 10 | 
																						 
											   Lloyd S .  Least squares quantization in PCM[J]. IEEE Transactions on Information Theory, 1982, 28, 21- 33. 
											 											 | 
										
																													
																						| 11 | 
																						 
											 Arthur D, Vassilvitskii S. k-means++: The advantages of careful seeding[C]//Proceedings of SODA, 2007: 1027-1035.
											 											 | 
										
																													
																						| 12 | 
																						 
											 Aggarwal A, Deshpande A, Kannan R. Adaptive sampling for k-means clustering[C]//Proceedings of APPROX and RANDOM, 2009: 15-28.
											 											 | 
										
																													
																						| 13 | 
																						 
											 Bachem O, Lucic M, Hassani S H, et al. Fast and provably good seedings for k-means[C]//Proceedings of NIPS, 2016: 55-63.
											 											 | 
										
																													
																						| 14 | 
																						 
											 Bachem O, Lucic M, Krause A. Distributed and provably good seedings for k-means in constant rounds[C]//Proceedings of ICML, 2017: 292-300.
											 											 | 
										
																													
																						| 15 | 
																						 
											 Bahmani B, Moseley B, Vattani A, et al. Scalable k-means++[C]//Proceedings of the VLDB Endowment, 2012: 622-633.
											 											 | 
										
																													
																						| 16 | 
																						 
											   Ostrovsky R ,  Rabani Y ,  Schulman L , et al.  The effectiveness of Lloyd-type methods for the k-means problem[J]. Journal of the ACM, 2012, 59, 1- 22. 
											 											 | 
										
																													
																						| 17 | 
																						 
											   Tseng G C .  Penalized and weighted k-means for clustering with scattered objects and prior information in high-throughput biological data[J]. Bioinformatics, 2007, 23, 2247- 2255. 
											 												 
																									doi: 10.1093/bioinformatics/btm320
																																			 											 | 
										
																													
																						| 18 | 
																						 
											 Zhang D, Hao C, Wu C, et al. A local search approximation algorithm for the k-means problem with penalties[C]//Proceedings of COCOON, 2017: 568-574.
											 											 | 
										
																													
																						| 19 | 
																						 
											 Chang X Y, Wang Y, Li R, et al. Sparse k-means with l∞/l0 penalty for high-dimensional data clustering[EB/OL]. (2014-03-31)[2021-07-08]. https://arxiv.org/pdf/1403.7890.pdf.
											 											 | 
										
																													
																						| 20 | 
																						 
											 Ackermann M R. Algorithms for the Bregman k-Median problem[D]. Paderborn: University of Paderborn, 2009.
											 											 | 
										
																													
																						| 21 | 
																						 
											   Banerjee A ,  Merugu S ,  Dhillon I S , et al.  Clustering with Bregman divergences[J]. Journal of Machine Learning Research, 2005, 6, 1705- 1749.
											 											 | 
										
																													
																						| 22 | 
																						 
											   Li M ,  Xu D ,  Yue J , et al.  The seeding algorithm for k-means problem with penalties[J]. Journal of Combinatorial Optimization, 2020, 39, 15- 32. 
											 												 
																									doi: 10.1007/s10878-019-00450-w
																																			 											 |