| 1 |
Drineas P , Frieze A , Kannan R , et al. Clustering large graphs via the singular value decomposition[J]. Machine Learning, 2004, 56 (1): 9- 33.
|
| 2 |
Lloyd S . Least squares quantization in PCM[J]. IEEE Transactions on Information Theory, 1982, 28 (2): 129- 137.
doi: 10.1109/TIT.1982.1056489
|
| 3 |
Agarwal P K, Mustafa N H. k-means projective clustering[C]//Proceedings of the 23rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, 2004: 155-165.
|
| 4 |
Gibou F, Fedkiw R. A fast hybrid k-means level set algorithm for segmentation[C]//Proceedings of the 4th Annual Hawaii International Conference on Statistics and Mathematics, 2005: 281-291.
|
| 5 |
Herwig R , Poustka A J , Muller C , et al. Large-scale clustering of cDNA-fingerprinting data[J]. Genome Research, 1999, 9 (11): 1093- 1105.
doi: 10.1101/gr.9.11.1093
|
| 6 |
Arthur D, Vassilvitskii S. k-means++: the advantages of careful seeding[C]//Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms, 2007: 1027-1035.
|
| 7 |
Khan S S , Ahmad A . Cluster center initialization algorithm for k-means clustering[J]. Pattern Recognition Letters, 2004, 25 (11): 1293- 1302.
doi: 10.1016/j.patrec.2004.04.007
|
| 8 |
Ahmadian S, Norouzi-Fard A, Svensson O, et al. Better guarantees for k-means and euclidean k-median by primal-dual algorithms[C]//Proceedings of the 58th Annual IEEE Symposium on Foundations of Computer Science, 2017: 61-72.
|
| 9 |
Krishnaswamy R, Li S, Sandeep S. Constant approximation for k-median and k-means with outliers via iterative rounding[C]//Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, 2018: 646-659.
|
| 10 |
Zhang D , Hao C , Wu C , et al. Local search approximation algorithms for the k-means problem with penalties[J]. Journal of Combinatorial Optimization, 2019, 37 (2): 439- 453.
doi: 10.1007/s10878-018-0278-6
|
| 11 |
Feng Q, Zhang Z, Shi F, et al. An improved approximation algorithm for the k-means problem with penalties[C]//Proceedings of the 2nd Annual International Workshop on Frontiers in Algorithmics, 2019: 170-181.
|
| 12 |
Wang Y, Möhring R H, Wu C, et al. Outliers detection is not so hard: approximation algorithms for robust clustering problems using local search techniques[EB/OL]. (2020-12-30)[2021-05-28]. https://arxiv.org/abs/2012.10884v2.
|
| 13 |
Geetha S , Poonthalir G , Vanathi P T . Improved k-means algorithm for capacitated clustering problem[J]. Journal of Computer Science, 2009, 8 (4): 52- 59.
|
| 14 |
Koskosidis Y A , Powell W B . Clustering algorithms for consolidation of customer orders into vehicle shipments[J]. Transportation Research Part B: Methodological, 1992, 26 (5): 365- 379.
doi: 10.1016/0191-2615(92)90032-R
|
| 15 |
Mulvey J M , Beck M P . Solving capacitated clustering problems[J]. European Journal of Operational Research, 1984, 18 (3): 339- 348.
doi: 10.1016/0377-2217(84)90155-3
|
| 16 |
Osman I H , Christofides N . Capacitated clustering problems by hybrid simulated annealing and tabu search[J]. International Transactions in Operational Research, 1994, 1 (3): 317- 336.
doi: 10.1016/0969-6016(94)90032-9
|
| 17 |
Shieh H M , May M D . Solving the capacitated clustering problem with genetic algorithms[J]. Journal of the Chinese Institute of Industrial Engineers, 2001, 18 (3): 1- 12.
doi: 10.1080/10170660109509453
|
| 18 |
Xu Y , Xu D , Du D , et al. Improved approximation algorithm for universal facility location problem with linear penalties[J]. Theoretical Computer Science, 2019, 774 (25): 143- 151.
|
| 19 |
Xu Y , Xu D , Du D , et al. Local search algorithm for universal facility location problem with linear penalties[J]. Journal of Global Optimization, 2017, 67 (1-2): 367- 378.
doi: 10.1007/s10898-015-0394-0
|
| 20 |
Li S. On uniform capacitated k-median beyond the natural LP relaxation[C]//Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms, 2015: 696-707.
|
| 21 |
Li S. Approximating capacitated k-median with (1+ ε)k open facilities[C]//Proceedings of the 27th annual ACM-SIAM symposium on Discrete algorithms, 2016: 786-796.
|
| 22 |
Demirci G, Li S. Constant approximation for capacitated k-median with (1+ε)-capacity violation[C]//Proceedings of the 43rd International Colloquium on Automata, Languages, and Programming, 2016: 262-274.
|
| 23 |
Han L , Xu D , Du D , et al. A local search approximation algorithm for the uniform capacitated k-facility location problem[J]. Journal of Combinatorial Optimization, 2018, 35 (2): 409- 423.
doi: 10.1007/s10878-017-0179-0
|
| 24 |
Han L , Xu D , Du D , et al. An approximation algorithm for the uniform capacitated k-means problem[J]. Journal of Combinatorial Optimization, 2020,
|
| 25 |
Cygan M, Hajiaghayi M T, Khuller S. LP rounding for k-centers with non-uniform hard capacities[C]//Proceedings of 53rd IEEE Symposium on Foundations of Computer Science, 2012: 273-282.
|
| 26 |
Ding H, Xu J. Solving the chromatic cone clustering problem via minimum spanning sphere[C]//Proceedings of 38th International Colloquium on Automata, Languages and Programming, 2011: 773-784.
|
| 27 |
Lammersen C, Schmidt M, Sohler C. Probabilistic k-median clustering in data streams[C]//Proceedings of 10th International Workshop on Approximation and Online Algorithms, 2012: 70-81.
|
| 28 |
Li J, Yi K, Zhang Q. Clustering with diversity[C]//Proceedings of 37th International Colloquium on Automata Languages and Programming, 2010: 188-200.
|
| 29 |
Sweeney L . k-Anonymity: a model for protecting privacy[J]. International Journal of Uncertainty Fuzziness and Knowledge-Based Systems, 2002, 10 (5): 557- 570.
doi: 10.1142/S0218488502001648
|
| 30 |
Ding H, Xu J. A unified framework for clustering constrained data without locality property[C]//Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms, 2015: 1471-1490.
|
| 31 |
Papadimitriou C H , Stegilitz K . Combinatorial Optimization: Algorithms and Complexity[M]. New York: Dover Publication, 1982.
|
| 32 |
Korupolu M R , Plaxton C G , Rajaraman R . Analysis of a local search heuristic for facility location problems[J]. Journal of Algorithms, 2000, 37 (1): 146- 188.
doi: 10.1006/jagm.2000.1100
|