| 1 | 
																						 
											 Agrawal R, Gollapudi S, Halverson A, et al. Diversifying search results[C]//Proceedings of the Second ACM International Conference on Web Search and Data Mining, 2009: 5-14.
											 											 | 
										
																													
																						| 2 | 
																						 
											   Golovin D ,  Krause A .  Adaptive submodularity: Theory and applications in active learning and stochastic optimization[J]. Journal of Artificial Intelligence Research, 2012, 42 (1): 427- 486.
											 											 | 
										
																													
																						| 3 | 
																						 
											   Gomez-Rodriguez M ,  Leskovec J ,  Krause A .  Inferring networks of diffusion and influence[J]. ACM Transactions on Knowledge Discovery from Data, 2010, 5 (4): 1- 37.
											 											 | 
										
																													
																						| 4 | 
																						 
											 Kempe D, Kleinberg J, Tardos E. Maximizing the spread of influence through a social network[C]//Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2003: 137-146.
											 											 | 
										
																													
																						| 5 | 
																						 
											 Wei K, Iyer R, Bilmes J. Submodularity in data subset selection and active learning[C]//Proceedings of International Conference on Machine Learning (ICML), 2015.
											 											 | 
										
																													
																						| 6 | 
																						 
											   Topkis D M .  Supermodularity and Complementarity[M]. Princeton: Princeton University Press, 2011.
											 											 | 
										
																													
																						| 7 | 
																						 
											   Nemhauser G L ,  Wolsey L A ,  Fisher M L .  An analysis of approximations for maximizing submodular set functions-I[J]. Mathematical Programming, 1978, 14 (1): 265- 294. 
											 												 
																									doi: 10.1007/BF01588971
																																			 											 | 
										
																													
																						| 8 | 
																						 
											   Conforti M ,  Cornuéjols G .  Submodular set functions, matroids and the greedy algorithm: tight worst-case bounds and some generalizations of the Rado-Edmonds theorem[J]. Discrete Applied Mathematics, 1984, 7 (3): 251- 274. 
											 												 
																									doi: 10.1016/0166-218X(84)90003-9
																																			 											 | 
										
																													
																						| 9 | 
																						 
											   Sviridenko M ,  Vondrák ,  J ,  Ward J .  Optimal approximation for submodular and supermodular optimization with bounded curvature[J]. Mathematics of Operations Research, 2017, 42 (4): 1197- 1218. 
											 												 
																									doi: 10.1287/moor.2016.0842
																																			 											 | 
										
																													
																						| 10 | 
																						 
											 Bai W, Bilmes J A. Greed is Still Good: Maximizing Monotone Submodular+Supermodular (BP)functions[C]//International Conference on Machine Learning, 2018: 304-313.
											 											 | 
										
																													
																						| 11 | 
																						 
											 Ji S, Xu D, Li M, et al. Stochastic greedy algorithm is still good: Maximizing submodular+ supermodular functions[C]//World Congress on Global Optimization, 2019: 488-497.
											 											 | 
										
																													
																						| 12 | 
																						 
											 Muthukrishnan S. Data streams: algorithms and applications[M]//Foundations and Trends in Theoretical Computer Science, 2005: 117-236.
											 											 | 
										
																													
																						| 13 | 
																						 
											 Ajtai M, Jayram T S, Kumar R, et al. Approximate counting of inversions in a data stream[C]//Proceedings of the thiry-fourth annual ACM symposium on Theory of Computing, 2002: 370-379.
											 											 | 
										
																													
																						| 14 | 
																						 
											 Dueck D, Frey B J. Non-metric affinity propagation for unsupervised image categorization[C]//2007 IEEE 11th International Conference on Computer Vision, 2007: 1-8.
											 											 | 
										
																													
																						| 15 | 
																						 
											 El-Arini K, Guestrin C. Beyond keyword search: discovering relevant scientific literature[C]//Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2011: 439-447.
											 											 | 
										
																													
																						| 16 | 
																						 
											 El-Arini K, Veda G, Shahaf D, et al. Turning down the noise in the blogosphere[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2009: 289-298.
											 											 | 
										
																													
																						| 17 | 
																						 
											 Gomes R, Krause A. Budgeted nonparametric learning from data streams[C]//Proceedings of the 27th International Conference on International Conference on Machine Learning, 2010: 391-398.
											 											 | 
										
																													
																						| 18 | 
																						 
											 Zoubin G. Scaling the indian buffet process via submodular maximization[C]//International Conference on Machine Learning, 2013: 1013-1021.
											 											 | 
										
																													
																						| 19 | 
																						 
											 Badanidiyuru A, Mirzasoleiman B, Karbasi A, et al. Streaming submodular maximization: massive data summarization on the fly[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2014: 671-680.
											 											 | 
										
																													
																						| 20 | 
																						 
											   Yu Q ,  Li H ,  Liao Y , et al.  Fast budgeted influence maximization over multi-action event logs[J]. IEEE Access, 2018, 6, 14367- 14378. 
											 												 
																									doi: 10.1109/ACCESS.2018.2809547
																																			 											 | 
										
																													
																						| 21 | 
																						 
											 Norouzi-Fard A, Tarnawski J, Mitrovic S, et al. Beyond 1/2-approximation for submodular maximization on massive data streams[C]//International Conference on Machine Learning, 2018: 3826-3835.
											 											 | 
										
																													
																						| 22 | 
																						 
											 Elenberg E, Dimakis A G, Feldman M, et al. Streaming weak submodularity: interpreting neural networks on the fly[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 4044-4054.
											 											 | 
										
																													
																						| 23 | 
																						 
											   Wang Y J ,  Xu D C ,  Wang Y S , et al.  Non-submodular maximization on massive data streams[J]. Journal of Global Optimization, 2020, 76 (4): 729- 743. 
											 												 
																									doi: 10.1007/s10898-019-00840-8
																																			 											 | 
										
																													
																						| 24 | 
																						 
											 Barbosa R, Ene A, Nguyen H L, et al. The power of randomization: distributed submodular maximization on massive datasets[C]//International Conference on Machine Learning, 2015: 236-1244.
											 											 | 
										
																													
																						| 25 | 
																						 
											 Barbosa R, Ene A, Nguyen H L, et al. A new framework for distributed submodular maximiza tion[C]//2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS), 2016: 645-654.
											 											 | 
										
																													
																						| 26 | 
																						 
											 Buchbinder N, Feldman M, Schwartz R. Online submodular maximization with preemption[C]//Proceedings of the twenty-sixth annual ACM-SIAM symposium on Discrete algorithms, 2014: 1202-1216.
											 											 | 
										
																													
																						| 27 | 
																						 
											   Chakrabarti A ,  Kale S .  Submodular maximization meets streaming: matchings, matroids, and more[J]. Mathematical Programming, 2015, 154 (1): 225- 247.
											 											 | 
										
																													
																						| 28 | 
																						 
											 Mirzasoleiman B, Badanidiyuru A, Karbasi A, et al. Lazier than lazy greedy[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2015: 1812-1818.
											 											 | 
										
																													
																						| 29 | 
																						 
											   Fujishige S .  Submodular Functions and Optimization[M]. Amsterdam: Elsevier, 2005.
											 											 | 
										
																													
																						| 30 | 
																						 
											 Bian A A, Buhmann J M, Krause A, et al. Guarantees for greedy maximization of non submodular functions with applications[C]//Proceedings of the 34th International Conference on Machine Learning (ICML), 2017: 498-507.
											 											 | 
										
																													
																						| 31 | 
																						 
											  杨瑞琪, 徐大川, 杜东雷, 等.  次模函数最大化的流算法综述[J]. 运筹学学报, 2020, 24 (2): 73- 86. 
											 											 |