| 1 |
Aloise D , Deshpande A , Hansen P , et al. NP-hardness of Euclidean sum-of-squares clustering[J]. Machine Learning, 2009, 75, 245- 248.
doi: 10.1007/s10994-009-5103-0
|
| 2 |
Drineas P , Frieze A , Kannan R , et al. Clustering large graphs via the singular value decomposition[J]. Machine Learning, 2004, 56, 9- 33.
doi: 10.1023/B:MACH.0000033113.59016.96
|
| 3 |
Awasthi P, Charikar M, Krishnaswamy R, et al. The hardness of approximation of Euclidean k-means[C]//Proceedings of SoCG, 2015: 754-767.
|
| 4 |
Bachem O, Lucic M, Hassani S H, et al. Approximate k-means++ in sublinear time[C]//Proceedings of AAAI, 2016: 1459-1467.
|
| 5 |
Blömer J, Lammersen C, Schmidt M, et al. Theoretical analysis of the k-means algorithm|A survey[M]//Algorithm Engineering|Selected Results and Surveys, Cham: Springer, 2016: 81-116.
|
| 6 |
Kanungo T , Mount D M , Netanyahu N S , et al. A local search approximation algorithm for k-means clustering[J]. Computational Geometry: Theory and Applications, 2004, 28, 89- 112.
doi: 10.1016/j.comgeo.2004.03.003
|
| 7 |
Lee E , Schmidt M , Wright J . Improved and simplified inapproximability for k-means[J]. Information Processing Letters, 2017, 120, 40- 43.
doi: 10.1016/j.ipl.2016.11.009
|
| 8 |
Xu D , Xu Y , Zhang D . A survey on algorithm for k-means problem and its variants[J]. Operations Research Transactions, 2017, 21, 101- 109.
|
| 9 |
Ahmadian S, Norouzi-Fard A, Svensson O, et al. Better guarantees for k-means and Euclidean k-median by primal-dual algorithms[C]//Proceedings of FOCS, 2017: 61-72.
|
| 10 |
Lloyd S . Least squares quantization in PCM[J]. IEEE Transactions on Information Theory, 1982, 28, 21- 33.
|
| 11 |
Arthur D, Vassilvitskii S. k-means++: The advantages of careful seeding[C]//Proceedings of SODA, 2007: 1027-1035.
|
| 12 |
Aggarwal A, Deshpande A, Kannan R. Adaptive sampling for k-means clustering[C]//Proceedings of APPROX and RANDOM, 2009: 15-28.
|
| 13 |
Bachem O, Lucic M, Hassani S H, et al. Fast and provably good seedings for k-means[C]//Proceedings of NIPS, 2016: 55-63.
|
| 14 |
Bachem O, Lucic M, Krause A. Distributed and provably good seedings for k-means in constant rounds[C]//Proceedings of ICML, 2017: 292-300.
|
| 15 |
Bahmani B, Moseley B, Vattani A, et al. Scalable k-means++[C]//Proceedings of the VLDB Endowment, 2012: 622-633.
|
| 16 |
Ostrovsky R , Rabani Y , Schulman L , et al. The effectiveness of Lloyd-type methods for the k-means problem[J]. Journal of the ACM, 2012, 59, 1- 22.
|
| 17 |
Tseng G C . Penalized and weighted k-means for clustering with scattered objects and prior information in high-throughput biological data[J]. Bioinformatics, 2007, 23, 2247- 2255.
doi: 10.1093/bioinformatics/btm320
|
| 18 |
Zhang D, Hao C, Wu C, et al. A local search approximation algorithm for the k-means problem with penalties[C]//Proceedings of COCOON, 2017: 568-574.
|
| 19 |
Chang X Y, Wang Y, Li R, et al. Sparse k-means with l∞/l0 penalty for high-dimensional data clustering[EB/OL]. (2014-03-31)[2021-07-08]. https://arxiv.org/pdf/1403.7890.pdf.
|
| 20 |
Ackermann M R. Algorithms for the Bregman k-Median problem[D]. Paderborn: University of Paderborn, 2009.
|
| 21 |
Banerjee A , Merugu S , Dhillon I S , et al. Clustering with Bregman divergences[J]. Journal of Machine Learning Research, 2005, 6, 1705- 1749.
|
| 22 |
Li M , Xu D , Yue J , et al. The seeding algorithm for k-means problem with penalties[J]. Journal of Combinatorial Optimization, 2020, 39, 15- 32.
doi: 10.1007/s10878-019-00450-w
|