Zangwill W I. Nonlinear programming via penalty function [J]. Manangement Science, 1967, 13: 334-358. Zenios S A, Pinar M C, Dembo R S. A smooth penalty function algorithm for network-structured problems [J]. European Journal of Operational Research, 1993, 64: 258-277. Pinar M C, Zenios S A. On smoothing exact penalty functions for convex constraints optimization [J]. SIAM Journal on Optimization, 1994, 4: 486-511. Yang X Q, Meng Z Q, Huang X X, et al. Smoothing nonlinear penalty functions for constrained optimization problems [J]. Numerical Functional Analysis and Optimization, 2003, 24: 351-364. Wu Z Y, Bai F S, Yang X Q, et al. An exact lower order penalty function and its smoothing in nonlinear programming [J]. Optimization, 2004, 53: 51-68. Meng Z Q, Dang C Y, Yang X Q. On the smoothing of the square-root exact penalty function for inequality constrained optimization [J]. Computational Optimization and Applications, 2006, 35: 375-398. Herty M, Klar A, Singh A K, et al. Smoothed penalty algorithms for optimization of nonlinear models [J]. Computational Optimization and Applications, 2007, 37: 157-176. Liu B Z. On smoothing exact penalty functions for nonlinear constrained optimization problems [J]. Journal of Applied Mathematics and Computing, 2009, 30: 259-270. Meng Z Q, Hu Q Y, Dang C Y. A penalty function algorithm with objective parameters for nonlinear mathema [J]. Journal of Industrial and Management Optimization, 2009, 5: 585-601. Meng Z Q, Dang C Y, Jiang M, et al. {A smoothing objective penalty function algorithm for inequality constrained optimization problems [J]. Numerical Functional Analysis and Optimization, 2011, 32: 806-820. Chen C H, Mangasarian O L. A class of smoothing functions for nonlinear and mixed complementarity problems [J]. Computational Optimization and Applications, 1996, 5: 97-138. Chen C H, Mangasarian O L. Smoothing methods for convex inequalities and linear complementarity problems [J]. Mathematical Programming, 1995, 71: 51-69. Wan Z, Wang Y J. Convergence of an inexact smoothing method for mathematical programs with equilibrium constraints [J]. Numerical Functional Analysis and Optimization, 2006, {\bf27: 485-495. Zhu Z B, Luo Z J, Zeng J W. A new smoothing technique for mathematical programs with equilibrium constraints [J]. Applied Mathematics and Mechanics, 2007, 28: 1407-1414. Hintermuller M, Kopacka I. A smooth penalty approach and a nonlinear multigrid algorithm for elliptic MPECs [J]. Computational Optimization and Applications, 2011, 50: 111-145. Rubinov A M, Huang X X, Yang X Q. The zero duality gap property and lower semicontinuity of the perturbation function [J]. Math Oper Res, 2002, 27: 775-791. |