运筹学学报 ›› 2013, Vol. 17 ›› Issue (2): 81-88.

• 运筹学 • 上一篇    下一篇

补图为2-点或2-边连通的图的最小特征值

余桂东1,2,范益政1,*   

  1. 1.  安徽大学数学科学学院, 合肥  230601 2.  安庆师范学院数字与计算机科学学院, 安徽安庆 246011
  • 收稿日期:2012-05-03 出版日期:2013-06-15 发布日期:2013-06-15
  • 通讯作者: 范益政 E-mail:fanyz@ahu.edu.cn

The least eigenvalue of graphs whose complements are 2-vertex or 2-edge connected

YU Guidong1,2,FAN Yizheng1,*   

  1. 1. School of Mathematical Sciences, Anhui University, Hefei 230601, China 2. School of Mathematics and Computation Sciences, Anqing Normal College, Anqing 246011, Anhui, China
  • Received:2012-05-03 Online:2013-06-15 Published:2013-06-15

摘要: 图的最小特征值定义为图的邻接矩阵的最小特征值,是刻画图结构性质的一个重要代数参数. 在所有给定阶数的补图为2-点或2-边连通的图中, 刻画了最小特征值达到极小的唯一图, 并给出了这类图最小特征值的下界.

关键词: 图, 2-点连通, 2-边连通, 邻接矩阵, 最小特征值

Abstract: The least eigenvalue of a graph is defined as the least eigenvalue of the adjacency matrix of the graph, which is an important algebraic parameter on characterizing structural property of graphs. In this paper we characterize the unique graph with the minimum least eigenvalue among all graphs of fixed order whose complements are 2-vertex connected or 2-edge connected, and present a lower bound for the least eigenvalue of such graphs.

Key words: graph, 2-vertex connected, 2-edge connected, adjacency matrix, least eigenvalue

中图分类号: