运筹学学报(中英文) ›› 2025, Vol. 29 ›› Issue (2): 95-102.doi: 10.15960/j.cnki.issn.1007-6093.2025.02.007

• 论文 • 上一篇    下一篇

最大度是3的二部平图的正常多色4-染色

于明晖1,*()   

  1. 1. 山东师范大学数学与统计学院, 山东济南 250358
  • 收稿日期:2022-01-27 出版日期:2025-06-15 发布日期:2025-06-12
  • 通讯作者: 于明晖 E-mail:yuminghui2001@163.com
  • 基金资助:
    国家自然科学基金(12071265);山东省自然科学基金(ZR2019MA032)

Proper polychromatic 4-coloring of subcubic bipartite plane graphs

Minghui YU1,*()   

  1. 1. School of Mathematics and Statistics, Shandong Normal University, Jinan 250358, Shandong, China
  • Received:2022-01-27 Online:2025-06-15 Published:2025-06-12
  • Contact: Minghui YU E-mail:yuminghui2001@163.com

摘要:

G的一个正常k-染色是G的一个k色点染色, 使得任两个相邻的顶点都异色。平图G的一个多色k-染色是G的一个k色点染色, 使得每个面出现k种不同的颜色。面f的度数是f上顶点的个数, 用$g(f)$来表示, 令$g(G)=\min\left\{g(f)|f\in F(G)\right\}$, 其中$F(G)$是平图G所有面的集合。显然, 若平图G存在多色k-染色, 则$k\leq g(G)$。Horev等人(2012)证明了3-正则二部简单平图是正常多色4-可染的。在本文中, 我们推广了上述结果, 证明了对于最大度是3的连通二部简单平图G, 若$g(G)\geq 5$, 则G是正常多色4-可染的。条件$g(G)\geq 5$是紧的, 因为存在$g(G)=4$最大度是3的连通二部简单平图G不能正常多色4-染色。

关键词: 二部图, 平图, 正常多色染色

Abstract:

A proper k-coloring of a graph G is a vertex k-coloring such that adjacent vertices have different colors. A polychromatic k-coloring of a plane graph G is a vertex k-coloring such that every face meets all k colors. The degree of a face f of G is the number of vertices incident with f and is denoted by $g(f)$. Let $g(G)=\min\{g(f)|f\in F(G)\}$, where $F(G)$ is the face set of plane graph G. Obviously, if a plane graph G has a polychromatic k-coloring, then $k\leq g(G)$. In 2012, Horev et al. showed that every simple cubic bipartite plane graph is proper polychromatic 4-colorable (2012). In this paper, we extend the above result, and show that every subcubic bipartite plane graph G with $g(G)\geq 5$ has a proper polychromatic 4-coloring. The condition that $g(G)\geq 5$ is tight, because there exists (non-cubic) subcubic bipartite plane graph G which has $g(G)=4$ but has no proper polychromatic 4-coloring.

Key words: bipartite graph, plane graph, proper polychromatic coloring

中图分类号: