1 |
Bondy J A , Murty U S R . Graph Theory[M]. Berlin: Springer-Verlag, 2008.
|
2 |
Korte B , Vygen J . Combinatorial Optimization: Theory and Algorithms (Fourth Edition)[M]. Berlin: Springer-Verlag, 2008.
|
3 |
Papadimitriou C H , Steiglitz K . Combinatorial Optimization: Algorithms and Complexity[M]. New Jersey: Prentice-Hall, 1982.
|
4 |
Hassin R , Tamir A . On the minimum diameter spanning tree problem[J]. Information Processing Letters, 1995, 53, 109- 111.
doi: 10.1016/0020-0190(94)00183-Y
|
5 |
Garey M R , Johnson D S . Computers and Intractability: A Guide to the NP-Completeness[M]. New York: Freman, 1979.
|
6 |
Kleitman D J , West D B . Spanning trees with many leaves[J]. SIAM Journal on Discrete Mathematics, 1991, 4, 99- 106.
doi: 10.1137/0404010
|
7 |
Brandstädt A , Dragan F F , Le H O , et al. Tree spanners on chordal graphs: Complexity and algorithms[J]. Theoretical Computer Science, 2004, 310, 329- 354.
doi: 10.1016/S0304-3975(03)00424-9
|
8 |
Brandstädt A , Dragan F F , Le H O , et al. Tree spanners for bipartite graphs and probe interval graphs[J]. Algorithmica, 2007, 47, 27- 51.
doi: 10.1007/s00453-006-1209-y
|
9 |
Madanlal M S , Venkatesan G , Rangan C P . Tree 3-spanners on interval, permutation and regular bipartite graphs[J]. Information Processing Letters, 1996, 59, 97- 102.
doi: 10.1016/0020-0190(96)00078-6
|
10 |
Ostrovskii M I . Minimal congestion trees[J]. Discrete Mathematics, 2004, 285, 219- 326.
doi: 10.1016/j.disc.2004.02.009
|
11 |
Bodlaender H L , Fomin F V , Golovach P A , et al. Parameterized complexity of the spanning tree congestion problem[J]. Algorithmica, 2012, 64, 85- 111.
doi: 10.1007/s00453-011-9565-7
|
12 |
Hakimi S L . Optimum location of switching centers and absolute centers and medians of a graph[J]. Operations Research, 1964, 12, 450- 459.
doi: 10.1287/opre.12.3.450
|
13 |
Piotrowski W , Syslo M M . Some properties of graph centroids[J]. Annals of Operations Research, 1991, 13, 227- 236.
doi: 10.1007/BF02115757
|
14 |
Mitchell S L . Another characterization of the centroid of a tree[J]. Discrete Mathematics, 1978, 24, 277- 280.
doi: 10.1016/0012-365X(78)90098-5
|
15 |
Lin H , He C . The minimum centroid branch spanning tree problem[J]. Journal of the Operations Research Society of China, 2024, 12, 528- 539.
doi: 10.1007/s40305-022-00419-3
|
16 |
Golumbic M C . Algorithmic Graph Theory and Perfect Graphs (Second Edition)[M]. Amsterdam: Elsevier, 2004.
|