运筹学学报(中英文) ›› 2025, Vol. 29 ›› Issue (1): 232-238.doi: 10.15960/j.cnki.issn.1007-6093.2025.01.020

•   • 上一篇    

完全二部图的Gallai猜想

耿显亚1,*(), 柴惠1   

  1. 1. 安徽理工大学数学与大数据学院, 安徽淮南 232000
  • 收稿日期:2021-09-27 出版日期:2025-03-15 发布日期:2025-03-08
  • 通讯作者: 耿显亚 E-mail:gengxianya@sina.com
  • 基金资助:
    国家自然科学基金(12171190);安徽省自然科学基金(2008085MA01)

Gallai's conjecture for complete bipartite graphs

Xianya GENG1,*(), Hui CHAI1   

  1. 1. School of Mathematics and Big Data, Anhui University of Science & Technology, Huainan 232000, Anhui, China
  • Received:2021-09-27 Online:2025-03-15 Published:2025-03-08
  • Contact: Xianya GENG E-mail:gengxianya@sina.com

摘要:

$G$是具有$n$个顶点的简单连通图。Gallai于1966年提出关于图的路分解猜想: 每个$n$阶简单连通图$G$都可以被分解为至多$\left\lceil\frac{n}{2}\right\rceil$条路。在本文中, 我们利用算法证明了Gallai猜想对于完全二部图$K_{n_1, n_2}$成立, 这里1≤n2 < n1n1是奇数。结合Constantinou和Ellinas (2018)的结果, 我们证明了对于任意的完全二部图, Gallai猜想成立。

关键词: 完全二部图, 路分解, Gallai猜想

Abstract:

Let $G$ be a connected simple graph on $n$ vertices. The Gallai's conjecture (1966) asserts that every simple connected graph $G$ on $n$ vertices can be decomposed into at most $\left\lceil\frac{n}{2}\right\rceil$ paths. In this paper, we prove that Gallai's conjecture is true for each complete bipartite graph $K_{n_1, n_2}, $ where 1≤n2 < n1 and n1 is odd. Together with the conclusions of [1], we show that Gallai's conjecture holds for all complete bipartite graphs.

Key words: complete bipartite graphs, path decomposition, Gallai's conjecture

中图分类号: