运筹学学报 ›› 2012, Vol. 16 ›› Issue (2): 105-114.

• 运筹学 • 上一篇    下一篇

一种新的求总极值的水平值估计算法

  楼烨1,2, 孙胜2, 武明楠2   

  1. 1. 上海科学技术职业学院,上海,201800; 2.  上海大学理学院,上海, 200444
  • 出版日期:2012-06-15 发布日期:2012-06-15
  • 通讯作者: 楼烨

A new level-value estimation method for  global minimization

   Lou-Ye1,2, SUN  Sheng2, WU  Ming-Nan2   

  1. 1. Shanghai Vocational College of Science and Technology, Shanghai 201800, China; 2. School of Sciences, Shanghai University, Shanghai 200444, China
  • Online:2012-06-15 Published:2012-06-15

摘要:  提出了一种求解总极值问题的新水平值估计算法. 为此, 引入一类变差函数并研究它的性质; 给出基于变差函数的全局最优性条件, 并构造出一种求总极值的水平值估计算法. 为了实现这种算法, 采用了基于重点样本技术的Monte-Carlo方法来计算变差,并利用相对熵算法的主要思想更新取样密度.初步的数值实验说明了算法的有效性.

关键词: 总极值, 变差函数, 水平值估计算法, 重点取样, 相对熵算法

Abstract: In this paper, a new level-value estimation method is proposed for solving global optimization problem. For this purpose,  we introduce a deviation function and study its properties.  Based the deviation function, we give a global optimality condition, and then propose a conceptual level-value estimation algorithm, and prove the global convergence of the proposed method.  For the implementation of the proposed method, we use the Monte-Carlo method with important sampling to compute the deviation, in which the sample density is updated by the main ideas of the cross-entropy method.  Some primary numerical
results show the validity of the proposed method.

Key words: global optimization, deviation function, the level-value estimation, important sampling, the cross-entropy method