[1] Bartz-Beielstein T, Zaefferer M. Model-based methods for continuous and discrete global optimization[J]. Applied Soft Computing, 2017, 55:154-167.
[2] 吴佩佩, 高岳林. 一个新的非线性整数规划问题的单参数填充函数算法[J]. 运筹学学报, 2017, 21(3):111-118.
[3] Li J R, Shang Y L, Han P. New tunnel-filled function method for discrete global optimization[J]. Journal of the Operations Research Society of China, 2017, 5(2):291-300.
[4] 王玫婷, 张建坤, 黄有亮. 基于改进遗传算法的工程项目多目标优化研究[J]. 建筑经济, 2017, 38(11):26-31.
[5] 何庆, 吴意乐, 徐同伟. 改进遗传模拟退火算法在TSP优化中的应用[J]. 控制与决策, 2018, 2:219-225.
[6] Zheng Q. Robust analysis and global optimization[J]. Annals of Operations Research, 1990, 24:273-286.
[7] 黄文杰. 全局最优化中的积分-水平集方法及其最优性条件[D]. 上海大学, 2007.
[8] Phu H X, Hoffmann A. Essential supremum and supremum of summable functions[J]. Numerical Functional Analysis and Optimization, 1996, 17(1/2):167-180.
[9] Wu D H, Tian W W, Zhang L S, et al. An algorithm of modified integral-level set method for solving global optimization[J]. Acta Mathematicae Applicatae Sinica, 2001, 24:100-110.
[10] Peng Z, Wu D H, Tian W W. A level-value estimation method for solving constrained global optimization[J]. Mathematica Numerica Sinica, 2007, 29(3):281-293.
[11] Peng Z, Wu D H. A modified integral global optimization method and its asymptotic convergence[J]. Acta Mathematicae Applicatae Sinica, 2009, 25:283-290.
[12] Yu H B, Zeng W J, Wu D H. A stochastic level-value estimation method for global optimization[J]. Journal of the Operations Research Society of China, 2017, 1:1-16.
[13] 许梦杰, 张连生. 用均值-水平集求多个总极值点的方法[J]. 运筹学杂志. 1996, 15(2):26-29.
[14] Cui H Q, Wang C C, Zheng Q. Optimality conditions and algorithms for integral minimization[J]. Computers and Mathematics with Applications, 2006, 52:55-64.
[15] Rubinstein R Y. The cross-entropy method for combinatorial and continuous optimization[J]. Methodology And Computing in Applied Probability, 1999, 2:127-190.
[16] De Boer, Kroese P T, Rubinstein D P. A tutorial on the cross-entropy method[J]. Annals of Operations Research, 2005, 134:19-67.
[17] 钱振琦, 邬冬华. 一种基于相对熵(CE)方法的新的随机水平值下降算法[J]. 运筹与管理, 2013,22(01):83-87. |