[1] Brauner N, Lehoux-Lebacque V, Celse B, et al. Planification d’expériences dans l’industrie chimique[C]//Colloque de l’Institut de la Production et des organisations Industrielles, 2007: 21-32. [2] Brauner N, Finke G, Lehoux-Lebacque V, et al. Operator non-availability periods [J]. 4OR-A Quarterly Journal of Operations Research, 2009, 7(3): 239-253. [3] Rapine C, Brauner N, Finke G, et al. Single machine scheduling with small operator-nonavailability periods [J]. Journal of Scheduling, 2012, 15(2): 127-139. [4] Chen Y, Zhang A, Tan Z Y. Complexity and approximation of single machine scheduling with an operator non-availability period to minimize total completion time [J]. Information Sciences, 2013, 251: 150-163. [5] Kacem I, Kellerer H, Seifaddini M. Efficient approximation schemes for the maximum lateness minimization on a single machine with a fixed operator or machine non-availability interval [J]. Journal of Combinatorial Optimization, 2016, 32(3): 970-981. [6] Wan L, Yuan J J. Single-machine scheduling with operator non-availability to minimize total weighted completion time [J]. Information Sciences, 2018, 445-446: 1-5. [7] Zuo L L, Sun Z X, Lu L F, et al. Single-machine scheduling with rejection and an operator non-availability interval [J]. Mathematics, 2019, 7(8): 668. [8] Li D W, Lu X W. Two-machine flow shop scheduling with an operator non-availability period to minimize makespan [J]. Journal of Combinatorial Optimization, 2020, 39(4): 1060-1078. [9] Gupta J N D, Gupta S K. Single facility scheduling with nonlinear processing times [J]. Computers & Industrial Engineering, 1988, 14(4): 387-393. [10] Browne S, Yechiali U. Scheduling deteriorating jobs on a single processor [J]. Operations Research, 1990, 38(3): 495-498. [11] Cheng T C E, Ding Q, Lin B M T. A concise survey of scheduling with time-dependent processing times [J]. European Journal of Operational Research, 2004, 152(1): 1-13. [12] Gawiejnowicz S. Time-Dependent Scheduling [M]. Berlin: Springer, 2008. [13] Sun X, Geng X N. Single-machine scheduling with deteriorating effects and machine maintenance [J]. International Journal of Production Research, 2019, 57(10): 3186-3199. [14] Li S S, Fan B Q. Single-machine scheduling with proportionally deteriorating jobs subject to availability constraints [J]. Asia-Pacific Journal of Operational Research, 2012, 29(4): 1250019. [15] Gawiejnowicz S. A review of four decades of time-dependent scheduling: Main results, new topics, and open problems [J]. Journal of Scheduling, 2020, 23(1): 3-47. [16] Mosheiov G. Scheduling jobs under simple linear deterioration [J]. Computers & Operations Research, 1994, 21(6): 653-659. [17] Ng C T, Barketau M S, Cheng T C E, et al. "Product Partition" and related problems of scheduling and systems reliability: Computational complexity and approximation [J]. European Journal of Operational Research, 2010, 207(2): 601-604. [18] Wegener I. Complexity Theory: Exploring the Limits of Efficient Algorithms [M]. Berlin: Springer, 2005. [19] Sahni S K. Algorithms for scheduling independent tasks [J]. Journal of the ACM, 1976, 23(1): 116-127. |