1 |
Lawler E L . A/pseudopolynomial0algorithm for sequencing jobs to minimize total tardiness[J]. Annals of Discrete Mathematics, 1977, 1, 331- 342.
|
2 |
Potts C N , Van Wassenhove L N . A branch and bound algorithm for the total weighted tardiness problem[J]. Operations Research, 1985, 33 (2): 363- 377.
doi: 10.1287/opre.33.2.363
|
3 |
Cheng T C E , Ng C T , Yuan J J , et al. Single machine scheduling to minimize total weighted tardiness[J]. European Journal of Operational Research, 2005, 165 (2): 423- 443.
doi: 10.1016/j.ejor.2004.04.013
|
4 |
Yuan J J , Cheng T C E , Ng C T . NP-hardness of the single-variable-resource scheduling problem to minimize the total weighted completion time[J]. European Journal of Operational Research, 2007, 178 (2): 631- 633.
doi: 10.1016/j.ejor.2006.02.014
|
5 |
Lawler E L , Moore J M . A functional equation and its application to resource allocation and sequencing problems[J]. Management Science, 1969, 16 (1): 77- 84.
doi: 10.1287/mnsc.16.1.77
|
6 |
Yue Q , Wan G . Single machine SLK/DIF due window assignment problem with job-dependent linear deterioration effects[J]. Journal of the Operational Research Society, 2016, 67 (6): 872- 883.
doi: 10.1057/jors.2015.107
|
7 |
Agnetis A , Mirchandani P B , Pacciarelli D , et al. Scheduling problems with two competing agents[J]. Operations Research, 2004, 52 (2): 229- 242.
doi: 10.1287/opre.1030.0092
|
8 |
Liu M , Wang S , Zheng F , et al. Algorithms for the joint multitasking scheduling and common due date assignment problem[J]. International Journal of Production Research, 2017, 55 (20): 6052- 6066.
doi: 10.1080/00207543.2017.1321804
|
9 |
Karhi S , Shabtay D . Single machine scheduling to minimise resource consumption cost with a bound on scheduling plus due date assignment penalties[J]. International Journal of Production Research, 2018, 56 (9): 3080- 3096.
doi: 10.1080/00207543.2017.1400708
|
10 |
Wang D , Yu Y , Qiu H , et al. Two-agent scheduling with linear resource-dependent processing times[J]. Naval Research Logistics, 2020, 67 (7): 573- 591.
doi: 10.1002/nav.21936
|
11 |
陈秋宏, 张新功. 带有固定区间的单机双代理可中断总误工问题[J]. 运筹学学报, 2019, 23 (1): 61- 71.
doi: 10.15960/j.cnki.issn.1007-6093.2019.01.007
|
12 |
Yang Y J , Yin G Q , Wang C W , et al. Due date assignment and two-agent scheduling under multitasking environment[J]. Journal of Combinatorial Optimization, 2022, 44, 2207- 2223.
doi: 10.1007/s10878-020-00600-5
|
13 |
Agnetis A, Billaut J-C, Pinedo M, et al. Fifty years of research in scheduling–-theory and applications [J/OL]. (2025-02-07)[2025-02-21]. European Journal of Operational Research. https://www.sciencedirect.com/science/article/pii/S0377221725000773.
|
14 |
Pinedo M L . Scheduling Theory, Algorithms and Systems[M]. New York: Springer, 2016.
|