Operations Research Transactions ›› 2024, Vol. 28 ›› Issue (2): 81-92.doi: 10.15960/j.cnki.issn.1007-6093.2024.02.006
Previous Articles Next Articles
Received:
2023-04-28
Online:
2024-06-15
Published:
2024-06-07
Contact:
Minglu YE
E-mail:yml2002cn@aliyun.com
CLC Number:
Minglu YE, Ming HUANG. An inertial projection algorithm for nonmonotone continuous variational inequalities[J]. Operations Research Transactions, 2024, 28(2): 81-92.
"
| iter | np | CPU | disxS | |||||||
IPA1 | IPA2 | IPA1 | IPA2 | IPA1 | IPA2 | IPA1 | IPA2 | ||||
50 | 24 | 6 | 26 | 21 | 0.00 | 0.01 | |||||
100 | 49 | 11 | 51 | 39 | 0.01 | 0.01 | |||||
500 | 76 | 17 | 79 | 57 | 0.01 | 0.01 | |||||
1 000 | 104 | 23 | 108 | 77 | 0.02 | 0.01 | |||||
3 000 | 132 | 31 | 137 | 114 | 0.04 | 0.01 |
1 |
Karamardian S . Complementarity problems over cones with monotone and pseudomonotone maps[J]. Journal of Optimization Theory and Applications, 1976, 18 (4): 445- 454.
doi: 10.1007/BF00932654 |
2 |
Goldstein A A . Convex programming in Hilbert space[J]. Bulletin of the American Mathematical Society, 1964, 70 (5): 709- 710.
doi: 10.1090/S0002-9904-1964-11178-2 |
3 |
Levitin E S , Polyak B T . Constrained minimization problems[J]. USSR Computational Mathematical Physics, 1966, 6 (5): 1- 50.
doi: 10.1016/0041-5553(66)90114-5 |
4 | Korpelevich G M . An extragradient method for finding saddle points and for other problems[J]. Matecon, 1976, 12 (4): 747- 756. |
5 |
Tseng P . A modified forward-backward splitting method for maximal monotone mappings[J]. SIAM Journal on Control and Optimization, 2000, 38 (2): 431- 446.
doi: 10.1137/S0363012998338806 |
6 |
Censor Y , Gibali A , Reich S . The subgradient extragradient method for solving variational inequalities in Hilbert space[J]. Journal of Optimization Theory and Applications, 2011, 148 (2): 318- 335.
doi: 10.1007/s10957-010-9757-3 |
7 |
Ye M L , He Y R . A double projection method for solving variational inequalities without monotonocity[J]. Computation Optimization and Applications, 2015, 60 (1): 141- 150.
doi: 10.1007/s10589-014-9659-7 |
8 |
Burachik R S , Millan R D . A projection algorithm for non-monotone variational inequalities[J]. Set-valued and Variational Analysis, 2020, 28 (1): 149- 166.
doi: 10.1007/s11228-019-00517-0 |
9 |
Strodiot J J , Vuong P T , Nguyen T T . A class of shrinking projection extragradient methods for solving non-monotone equilibrium problems in Hilbert spaces[J]. Journal of Global Optimization, 2016, 64 (1): 159- 178.
doi: 10.1007/s10898-015-0365-5 |
10 |
Van Dinh B , Kim D S . Projection algorithms for solving nonmonotone equilibrium problems in Hilbert space[J]. Journal of Computational and Applied Mathematics, 2016, 302, 106- 117.
doi: 10.1016/j.cam.2016.01.054 |
11 |
Deng L , Hu R , Fang Y . Projection extragradient algorithms for solving nonmonotone and non-Lipschitzian equilibrium problems in Hilbert spaces[J]. Numerical Algorithms, 2021, 86, 191- 221.
doi: 10.1007/s11075-020-00885-x |
12 |
Liu H , Yang J . Weak convergence of iterative methods for solving quasimonotone variational inequalities[J]. Computation Optimization and Applications, 2020, 77 (2): 491- 508.
doi: 10.1007/s10589-020-00217-8 |
13 |
Ye M L . An infeasible projection type algorithm for nonmonotone variational inequalities[J]. Numerical Algorithms, 2022, 89 (4): 1723- 1742.
doi: 10.1007/s11075-021-01170-1 |
14 |
Polyak B T . Some methods of speeding up the convergence of iteration methods[J]. USSR Computational Mathematical Physics, 1964, 4 (5): 1- 17.
doi: 10.1016/0041-5553(64)90137-5 |
15 |
Wen B , Chen X , Pong T K . A proximal difference of convex algorithm with extrapolation[J]. Computation Optimization and Applications, 2018, 69, 297- 324.
doi: 10.1007/s10589-017-9954-1 |
16 |
Pock T , Sabach S . Inertial proximal alternating linearized minimization (iPALM) for nonconvex and nonsmooth problems[J]. SIAM Journal on Imaging Sciences, 2016, 9, 1756- 1787.
doi: 10.1137/16M1064064 |
17 |
Thong D V , Van Hieu D , Rassias T M . Self adaptive inertial subgradient extragradient algorithms for solving pseudomonotone variational inequality problems[J]. Optimization Letters, 2020, 14, 115- 144.
doi: 10.1007/s11590-019-01511-z |
18 |
Thong D V , Vinh N T , Cho Y J . New strong convergence theorem of the inertial projection and contraction method for variational inequality problems[J]. Numerical Algorithms, 2020, 84 (1): 285- 305.
doi: 10.1007/s11075-019-00755-1 |
19 |
Shehu Y , Iyiola O S . Projection methods with alternating inertial steps for variational inequalities: Weak and linear convergence[J]. Applied Numerical Mathematics, 2020, 157, 315- 337.
doi: 10.1016/j.apnum.2020.06.009 |
20 |
Ye M L , Pong T K . A subgradient-based approach for finding the maximum feasible subsystem with respect to a set[J]. SIAM Journal on Optimization, 2020, 30 (2): 1274- 1299.
doi: 10.1137/18M1186320 |
21 |
He Y . Solvability of the minty variational inequality[J]. Journal of Optimization Theory and Applications, 2017, 174 (3): 686- 692.
doi: 10.1007/s10957-017-1124-1 |
22 | Zarantonello E H . Projections on Convex sets in Hilbert Space and Spectral Theory, Contributions to Nonlinear Functional Analysis[M]. New York: Academic Press, 1971. |
23 | He Y R . A new double projection algorithm for variational inequalities[J]. Journal of Computational and Applied Mathematics, 2006, 185 (1): 163- 173. |
24 | Boyd S , Vandenberghe L . Convex Optimization[M]. Cambridge: Cambridge University Press, 2004. |
25 |
Ye M L . An improved projection method for solving generelized varistional inequality problems[J]. Optimization, 2018, 67 (9): 1523- 1533.
doi: 10.1080/02331934.2018.1478971 |
26 | Gafni E M , Bertsekas D P . Two-metric projection problems and descent methods for asymmetric variational inequality problems[J]. Mathematical Programming, 1984, 53, 99- 110. |
27 | Polyak B T . Introduction to Optimization[M]. New York: Optimization Software, 1987. |
[1] | Maoran WANG, Xingju CAI, Zhongming WU, Deren HAN. First-order splitting algorithm for multi-model traffic equilibrium problems [J]. Operations Research Transactions, 2023, 27(2): 63-78. |
[2] | Minglu YE, Huan DENG. A new projection and contraction algorithm for solving quasimonotone variational inequalities [J]. Operations Research Transactions, 2023, 27(1): 127-137. |
[3] | XU Zi, ZHANG Huiling. Optimization algorithms and their complexity analysis for non-convex minimax problems [J]. Operations Research Transactions, 2021, 25(3): 74-86. |
[4] | Xueling ZHOU, Meixia LI, Haitao CHE. Successive relaxed projection algorithm for multiple-sets split equality problem [J]. Operations Research Transactions, 2021, 25(2): 93-103. |
[5] |
LI Jianling, ZHANG Hui, YANG Zhenping, JIAN Jinbao.
A globally convergent SSDP algorithm without a penalty function or a filter for nonlinear semidefinite programming
[J]. Operations Research Transactions, 2018, 22(4): 1-16.
|
[6] | CHEN Xiangping. Spectral HS projection algorithm for solving nonlinear monotone equations [J]. Operations Research Transactions, 2018, 22(3): 15-27. |
[7] | FENG Junkai, ZHANG Haibin, QIN Yuan, ZHANG Kaili. An inexact parallel alternating direction method for structured variational inequalities [J]. Operations Research Transactions, 2018, 22(2): 18-30. |
[8] | QU Biao, ZHANG Wenwei, YU Lichao. The relaxed projection methods for solving the l_1-norm problem of linear equations and their applications [J]. Operations Research Transactions, 2017, 21(2): 57-65. |
[9] | HANG Dan, YAN Shijian. Convergence of nonmonotonic Perry-Shanno's memoryless quasi-Newton method with parameters [J]. Operations Research Transactions, 2016, 20(4): 85-92. |
[10] | LIU Yuanwen, OU Yigui. A hybrid method for a system of nonlinear equations with bound constraints [J]. Operations Research Transactions, 2015, 19(1): 45-56. |
[11] | LIU Yuanyuan, OU Yigui. An ODE-based hybrid method based on the nonmonotone technique [J]. Operations Research Transactions, 2013, 17(3): 11-22. |
[12] | ZHAO Qi, ZHANG Yan. A Nonmonotoe Filter Method For Minimax Problems [J]. Operations Research Transactions, 2012, 16(2): 91-104. |
[13] | WANG Hua. A Nonmonotone Feasible SQP Method for Nonlinear Complementarity Problem [J]. Operations Research Transactions, 2011, 15(2): 85-94. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||