1 |
Goldstein A A . Convex programming in Hilbert space[J]. Bulletin of the American Mathematical Society, 1964, 70 (5): 709- 710.
doi: 10.1090/S0002-9904-1964-11178-2
|
2 |
Levitin E S , Polyak B T . Constrained minimization methods[J]. USSR Computational Mathematics and Mathematical Physics, 1966, 6 (5): 1- 50.
doi: 10.1016/0041-5553(66)90114-5
|
3 |
Korpelevich G M . An extragradient method for finding saddle points and for other problems[J]. Matecon, 1976, 12 (4): 747- 756.
|
4 |
Khobotov E N . Modification of the extra-gradient method for solving variational inequalities and certain optimization problems[J]. USSR Computational Mathematics and Mathematical Physics, 1987, 27 (5): 120- 127.
doi: 10.1016/0041-5553(87)90058-9
|
5 |
Iusem A N . An iterative algorithm for the variational inequality problem[J]. Computational and Applied Mathematics, 1994, 13, 103- 114.
|
6 |
Iusem A N , Svaiter B F . A variant of Korpelevich's method for variational inequalities with a new search strategy[J]. Optimization, 1997, 42 (4): 309- 321.
doi: 10.1080/02331939708844365
|
7 |
Solodov M V , Svaiter B F . A new projection method for variational inequality problems[J]. SIAM Journal on Control and Optimization, 1999, 37 (3): 765- 776.
doi: 10.1137/S0363012997317475
|
8 |
Tseng P . A modified forward-backward splitting method for maximal monotone mappings[J]. SIAM Journal on Control and Optimization, 2000, 38 (2): 431- 446.
doi: 10.1137/S0363012998338806
|
9 |
Censor Y , Gibali A , Reich S . The subgradient extragradient method for solving variational inequalities in Hilbert space[J]. Journal of Optimization Theory and Applications, 2011, 148 (2): 318- 335.
doi: 10.1007/s10957-010-9757-3
|
10 |
Vuong P T . On the weak convergence of the extragradient method for solving pseudo-monotone variational inequalities[J]. Journal of Optimization Theory and Applications, 2018, 176 (2): 399- 409.
doi: 10.1007/s10957-017-1214-0
|
11 |
He B . A class of projection and contraction methods for monotone variational inequalities[J]. Applied Mathematics and Optimization, 1997, 35 (1): 69- 76.
doi: 10.1007/s002459900037
|
12 |
Ye M , He Y . A double projection method for solving variational inequalities without monotonicity[J]. Computational Optimization and Applications, 2015, 60 (1): 141- 150.
doi: 10.1007/s10589-014-9659-7
|
13 |
Lei M , He Y R . An extragradient method for solving variational inequalities without monotonicity[J]. Journal of Optimization Theory and Applications, 2021, 60 (188): 432- 446.
|
14 |
Ye M . An infeasible projection type algorithm for nonmonotone variational inequalities[J]. Numerical Algorithms, 2022, 89 (4): 1723- 1742.
doi: 10.1007/s11075-021-01170-1
|
15 |
Liu H , Yang J . Weak convergence of iterative methods for solving quasimonotone variational inequalities[J]. Computational Optimization and Applications, 2020, 77 (2): 491- 508.
doi: 10.1007/s10589-020-00217-8
|
16 |
Ye M . A half-space projection method for solving generalized Nash equilibrium problems[J]. Optimization, 2017, 66 (7): 1119- 1134.
doi: 10.1080/02331934.2017.1326045
|
17 |
He Y . A new double projection algorithm for variational inequalities[J]. Journal of Computational and Applied Mathematics, 2006, 185 (1): 166- 173.
doi: 10.1016/j.cam.2005.01.031
|
18 |
Facchinei F , Pang J S . Finite-Dimensional Variational Inequalities and Complementarity Problems[M]. New York: Springer, 2003.
|
19 |
Boyd S P , Vandenberghe L . Convex Optimization[M]. Cambridge: Cambridge University Press, 2004.
|
20 |
He B , Liao L . Improvements of some projection methods for monotone nonlinear variational inequalities[J]. Journal of Optimization Theory and Applications, 2002, 112 (1): 111- 128.
doi: 10.1023/A:1013096613105
|