Operations Research Transactions ›› 2023, Vol. 27 ›› Issue (1): 43-52.doi: 10.15960/j.cnki.issn.1007-6093.2023.01.003
Previous Articles Next Articles
Received:
2021-04-06
Online:
2023-03-15
Published:
2023-03-16
Contact:
Wenxun XING
E-mail:wxing@mail.tsinghua.edu.cn
CLC Number:
Jintao XU, Wenxun XING. SIR type COVID-19 multi-stage optimal control model[J]. Operations Research Transactions, 2023, 27(1): 43-52.
"
相邻两阶段易感者( | |
相邻两阶段易感者( | |
相邻两阶段无症状感染者( | |
相邻两阶段有症状感染者( | |
相邻两阶段易感者( | |
相邻两阶段易感者( | |
相邻两阶段无症状感染者( | |
相邻两阶段有症状感染者( | |
相邻两阶段免疫者( | |
相邻两阶段由于输入输出导致的易感者( | |
相邻两阶段内新生儿人数 | |
相邻两阶段由于输入输出导致的无症状感染者( | |
相邻两阶段由于输入输出导致的有症状感染者( | |
相邻两阶段由于输入输出导致的免疫者( |
"
方程组(1)疫情传播参数需满足的关系式 | 原因解释 |
易感者( | |
无症状感染者( | |
有症状感染者( | |
免疫者( | |
依据文献[ | |
本文的合理假设 |
1 | 张彦平. 新型冠状病毒肺炎流行病学特征分析[J]. 中华流行病学杂志, 2020, 41 (2): 145- 151. |
2 | 严杰, 李明远, 孙爱华, 等. 2019新型冠状病毒及其感染性肺炎[J]. 中华微生物学和免疫学杂志, 2020, 40 (1): 1- 6. |
3 | 徐宝丽, 管甲亮, 术超, 等. 新型冠状病毒COVID-19相关研究进展[J]. 中华医院感染学杂志, 2020, 30 (6): 839- 844. |
4 | 陈兴志, 田宝单, 王代文, 等. 基于SEIR模型的COVID-19疫情防控效果评估和预测[J]. 应用数学和力学, 2021, 42 (2): 199- 211. |
5 |
Xu C , Yu Y , Chen Y , et al. Forecast analysis of the epidemics trend of COVID-19 in the USA by a generalized fractional-order SEIR model[J]. Nonlinear Dynamics, 2020, 101, 1621- 1634.
doi: 10.1007/s11071-020-05946-3 |
6 |
Mahrouf M , Boukhouima A , Zine H , et al. Modeling and forecasting of COVID-19 spreading by delayed stochastic differential equations[J]. Axioms, 2021, 10 (1): 18.
doi: 10.3390/axioms10010018 |
7 |
Khyar O , Allali K . Global dynamics of a multi-strain SEIR epidemic model with general incidence rates: application to COVID-19 pandemic[J]. Nonlinear Dynamics, 2020, 102, 489- 509.
doi: 10.1007/s11071-020-05929-4 |
8 | Arcede J P , Caga-anan R L , Mentuda C Q , et al. Accounting for symptomatic and asymptomatic in a SEIR-type model of COVID-19[J]. Mathematical Modelling of Natural Phenomena, 2020, 15, 34. |
9 | Zhang Z , Zeb A , Hussain S , et al. Dynamics of COVID-19 mathematical model with stochastic perturbation[J]. Advances in Difference Equations, 2020, 2020, 451. |
10 | 薛毅. 数学建模基础[M]. 北京: 科学出版社, 2011. |
11 | 吴尊友. 新型冠状病毒肺炎无症状感染者在疫情传播中的作用与防控策略[J]. 中华流行病学杂志, 2020, 41 (6): 801- 805. |
12 | Nesterov Y. Squared functional systems and optimization problems[M]//High Performance Optimization, Boston: Springer, 2000: 405-440. |
13 | 邢文训, 方述诚. 线性锥优化导论[M]. 北京: 清华大学出版社, 2020. |
14 | 美国最快12月11日接种新冠疫苗 一线医护人员率先接种[EB/OL]. (2020-11-24)[2021-03-06]. https://xw.qq.com/cmsid/20201124V03H5I00. |
[1] | WANG Haijun, WANG Huihui. Optimality conditions and duality theorems for interval-valued optimization problems with vanishing constraints [J]. Operations Research Transactions, 2023, 27(1): 87-102. |
[2] | LIAO Wudai, ZHOU Jun. Recurrent neural network dynamic for time-varying convex quadratic programming [J]. Operations Research Transactions, 2023, 27(1): 103-114. |
[3] | YE Minglu, DENG Huan. A new projection and contraction algorithm for solving quasimonotone variational inequalities [J]. Operations Research Transactions, 2023, 27(1): 127-137. |
[4] |
Fan YUAN, Dachuan XU, Dongmei ZHANG.
A survey of differential privacy algorithms for the |
[5] | Wenhui XIE, Chen LING, Chenjian PAN. A tensor completion method based on tensor train decomposition and its application in image restoration [J]. Operations Research Transactions, 2022, 26(3): 31-43. |
[6] | Binwu ZHANG, Xiucui GUAN. The bounded inverse optimal value problem on minimum spanning tree under unit infinity norm [J]. Operations Research Transactions, 2022, 26(3): 44-56. |
[7] | An ZHANG, Yong CHEN, Guangting CHEN, Zhanwen CHEN, Qiaojun SHU, Guohui LIN. Maximum matching based approximation algorithms for precedence constrained scheduling problems [J]. Operations Research Transactions, 2022, 26(3): 57-74. |
[8] | Bing SU, Wyatt CARLSON, Jiabin FAN, Arthur GAO, Yanjun SHAO, Guohui LIN. Sharing bicycle relocating with minimum carbon emission [J]. Operations Research Transactions, 2022, 26(3): 75-91. |
[9] | Dong WANG, Ganggang LI, Wenchang LUO. Approximation algorithm for mixed batch scheduling on identical machines for jobs with arbitrary sizes [J]. Operations Research Transactions, 2022, 26(3): 133-142. |
[10] | Ping ZHOU, Min JI, Yiwei JIANG. LPT heuristic for parallel-machine scheduling of maximizing total early work [J]. Operations Research Transactions, 2022, 26(3): 151-156. |
[11] | Jiahao LYU, Honglin LUO, Zehua YANG, Jianwen PENG. A stochastic Bregman ADMM with its application in training sparse structure SVMs [J]. Operations Research Transactions, 2022, 26(2): 16-30. |
[12] | Bo WANG, Li CHU, Liwei ZHANG, Hongwei ZHANG. An SAA approach for a class of second-order cone stochastic inverse quadratic programming problem [J]. Operations Research Transactions, 2022, 26(2): 31-44. |
[13] | Wenjie LI, Yujing LI, Hailing LIU. Research on the single-machine online schedule in which the jobs' release times and processing times are agreeable [J]. Operations Research Transactions, 2022, 26(2): 55-63. |
[14] | Chunyan BI, Long WAN, Wenchang LUO. Approximation algorithm for uniform parallel machine scheduling with release dates and job rejection [J]. Operations Research Transactions, 2022, 26(2): 73-82. |
[15] | Xiaoli HUANG, Yuelin GAO, Bo ZHANG, Xia LIU. An adaptive global optimization algorithm for solving quadratically constrained quadratic programming problems [J]. Operations Research Transactions, 2022, 26(2): 83-100. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||