Operations Research Transactions ›› 2025, Vol. 29 ›› Issue (2): 80-94.doi: 10.15960/j.cnki.issn.1007-6093.2025.02.006
• Research Article • Previous Articles Next Articles
Received:2024-07-21
Online:2025-06-15
Published:2025-06-12
Contact:
Xianjun LONG
E-mail:xianjunlong@ctbu.edu.cn
CLC Number:
Kang ZENG, Xianjun LONG. A golden ratio proximal alternating linearized algorithm for nonconvex composite optimization problems[J]. Operations Research Transactions, 2025, 29(2): 80-94.
| 4 |
Donoho D L . Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52, 1289- 1306.
doi: 10.1109/TIT.2006.871582 |
| 5 | Beck A . On the convergence of alternating minimization for convex programming with applications to iteratively reweighted least squares and decomposition schemes[J]. SIAM Journal on Optimization, 2013, 25, 185- 209. |
| 6 |
Ochs P , Brox T , Pock T . IPiasco: Inertial proximal algorithm for strongly convex optimization[J]. Journal of Mathematical Imaging and Vision, 2015, 53, 171- 181.
doi: 10.1007/s10851-015-0565-0 |
| 7 |
Gao X , Cai X J , Han D R . A Gauss-Seidel type inertial proximal alternating linearized minimization for a class of nonconvex optimization problems[J]. Journal of Global Optimization, 2020, 76, 863- 887.
doi: 10.1007/s10898-019-00819-5 |
| 8 |
Wang Q S , Han D R . A generalized inertial proximal alternating linearized minimization method for nonconvex nonsmooth problems[J]. Applied Numerical Mathematics, 2023, 189, 66- 87.
doi: 10.1016/j.apnum.2023.03.014 |
| 9 |
Gao X , Cai X J , Wang X F , et al. An alternative structure-adapted Bregman proximal gradient descent algorithm for constrained nonconvex nonsmooth optimization problems and its inertial variant[J]. Journal of Global Optimization, 2023, 87, 277- 300.
doi: 10.1007/s10898-023-01300-0 |
| 10 |
Chao M T , Nong F F , Zhao M Y . An inertial alternating minimization with Bregman distance for a class of nonconvex and nonsmooth problems[J]. Journal of Applied Mathematics and Computing, 2023, 69, 1559- 1581.
doi: 10.1007/s12190-022-01799-8 |
| 11 |
Zhao J , Dong Q L , Rassias M T , et al. Two-step inertial Bregman proximal alternating minimization for nonconvex and nonsmooth problems[J]. Journal of Global Optimization, 2022, 84, 941- 966.
doi: 10.1007/s10898-022-01176-6 |
| 12 |
Yang X , Xu L L . Some accelerated alternating proximal gradient algorithms for a class of nonconvex nonsmooth problems[J]. Journal of Global Optimization, 2023, 87, 939- 964.
doi: 10.1007/s10898-022-01214-3 |
| 13 |
Malitsky Y . Golden ratio algorithms for variational inequalities[J]. Mathematical Programming, 2020, 184, 383- 410.
doi: 10.1007/s10107-019-01416-w |
| 14 | Rockafellar R T , Wets R J B . Variational Analysis[M]. Berlin: Springer, 2009. |
| 1 |
Attouch H , Bolte J , Redont P , et al. Proximal alternating minimization and projection methods for nonconvex problems: An approach based on the Kurdyka-Łojasiewicz inequality[J]. Mathematics of Operations Research, 2010, 35, 438- 457.
doi: 10.1287/moor.1100.0449 |
| 2 |
Bolte J , Sabach S , Teboulle M . Proximal alternating linearized minimization for nonconvex and nonsmooth problems[J]. Mathematical Programming, 2014, 146, 459- 494.
doi: 10.1007/s10107-013-0701-9 |
| 3 |
Attouch H , Bolte J , Svaiter B F . Convergence of descent methods for semi-algebraic and tame problems: Proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods[J]. Mathematical Programming, 2013, 137, 91- 129.
doi: 10.1007/s10107-011-0484-9 |
| 15 |
Bolte J , Daniilidis A , Lewis A S , et al. Clark subgradients of stratifiable functions[J]. SIAM Journal on Optimization, 2007, 18, 556- 572.
doi: 10.1137/060670080 |
| 16 |
Xu Z B , Chang X Y , Xu F M , et al. L1/2 regularization: A thresholding representation theory and a fast solver[J]. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23, 1013- 27.
doi: 10.1109/TNNLS.2012.2197412 |
| [1] | ZHANG Yuru, ZHANG Xue, LAN Ru. A variable metric extrapolation hard threshold algorithm for some linear inverse problem [J]. Operations Research Transactions, 2025, 29(2): 158-174. |
| [2] | FENG Xudong, JIA Wensheng. An approximation theorem and generic convergence for generalized weakly-mixed vector quasi-equilibrium problem [J]. Operations Research Transactions, 2025, 29(2): 201-213. |
| [3] | Xiao WANG. Stochastic approximation methods for nonconvex constrained optimization [J]. Operations Research Transactions, 2023, 27(4): 153-165. |
| [4] | Jianwen PENG, Hongwang LEI. A class of inertial symmetric regularization alternating direction method of multipliers for nonconvex two-block optimization [J]. Operations Research Transactions, 2023, 27(3): 37-52. |
| [5] | Jing ZENG, Ruowen DING. Stability of solutions for a class of non-convex vector optimization problems with mapping differences [J]. Operations Research Transactions, 2023, 27(3): 121-128. |
| [6] | Maoran WANG, Xingju CAI, Zhongming WU, Deren HAN. First-order splitting algorithm for multi-model traffic equilibrium problems [J]. Operations Research Transactions, 2023, 27(2): 63-78. |
| [7] | LIU Pengjie, JIANG Xianzhen, SONG Dan. A class of spectral conjugate gradient method with sufficient descent property [J]. Operations Research Transactions, 2022, 26(4): 87-97. |
| [8] | Jiahao LYU, Honglin LUO, Zehua YANG, Jianwen PENG. A stochastic Bregman ADMM with its application in training sparse structure SVMs [J]. Operations Research Transactions, 2022, 26(2): 16-30. |
| [9] | Huiling ZHANG, Naoerzai SAI, Xiaoyun WU. Modified PRP conjugate gradient method for unconstrained optimization [J]. Operations Research Transactions, 2022, 26(2): 64-72. |
| [10] | Xiquan SHAN, Meixia LI, Jinyu LIU. Smoothing Newton method for the tensor stochastic complementarity problem [J]. Operations Research Transactions, 2022, 26(2): 128-136. |
| [11] | Liyuan CUI, Shouqiang DU. Projected Levenberg-Marquardt method for stochastic R0 tensor complementarity problems [J]. Operations Research Transactions, 2021, 25(4): 69-79. |
| [12] | ZHANG Liwei. Discussion on second-order analysis in augmented Lagrange method [J]. Operations Research Transactions, 2021, 25(3): 1-14. |
| [13] | Xueling ZHOU, Meixia LI, Haitao CHE. Successive relaxed projection algorithm for multiple-sets split equality problem [J]. Operations Research Transactions, 2021, 25(2): 93-103. |
| [14] | Biao QU, Wei XU, Xinyan WANG. A remark on the convergence of the two-subgradient extragradient algorithm for the variational inequality problem [J]. Operations Research Transactions, 2021, 25(2): 144-148. |
| [15] | Hai YU, Wanrong ZHAN. Strongly convergent ball-relaxed CQ algorithm and its application [J]. Operations Research Transactions, 2021, 25(1): 50-60. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
