Operations Research Transactions ›› 2025, Vol. 29 ›› Issue (4): 175-190.doi: 10.15960/j.cnki.issn.1007-6093.2025.04.014
• Research Article • Previous Articles Next Articles
Rui SONG1, Yiran WANG1, Zhongming WU1,*(
)
Received:2022-11-01
Online:2025-12-15
Published:2025-12-11
Contact:
Zhongming WU
E-mail:wuzm@nuist.edu.cn
CLC Number:
Rui SONG, Yiran WANG, Zhongming WU. Convergence analysis of the inexact generalized alternating direction method of multipliers with indefinite proximal term[J]. Operations Research Transactions, 2025, 29(4): 175-190.
"
| Iter. | Initer. | Time/s | SNR | Iter. | Initer. | Time/s | SNR | |||
| House | 23 | 1 833 | 5.70 | 24.72 | 26 | 2 192 | 6.43 | 24.72 | ||
| 18 | 1 750 | 5.26 | 24.72 | 22 | 1 935 | 5.53 | 24.72 | |||
| 16 | 1 689 | 4.62 | 24.72 | 19 | 1 858 | 5.14 | 24.72 | |||
| Man | 20 | 2 304 | 16.61 | 16.61 | 24 | 2 552 | 19.14 | 16.61 | ||
| 18 | 2 240 | 15.30 | 16.61 | 22 | 2 354 | 16.77 | 16.61 | |||
| 17 | 1 926 | 13.52 | 16.61 | 18 | 2 148 | 14.53 | 16.61 | |||
| 1 |
Beck A , Teboulle M . A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM Journal on Imaging Sciences, 2009, 2 (1): 183- 202.
doi: 10.1137/080716542 |
| 2 |
Candès E J , Recht B . Exact matrix completion via convex optimization[J]. Communications of the ACM, 2012, 55 (6): 111- 119.
doi: 10.1145/2184319.2184343 |
| 3 |
Chen S S , Donoho D L , Saunders M A . Atomic decomposition by basis pursuit[J]. SIAM Review, 2001, 43 (1): 129- 159.
doi: 10.1137/S003614450037906X |
| 4 |
Recht B , Fazel M , Parrilo P A . Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization[J]. SIAM Review, 2010, 52 (3): 471- 501.
doi: 10.1137/070697835 |
| 5 |
Tao M , Yuan X . Recovering low-rank and sparse components of matrices from incomplete and noisy observations[J]. SIAM Journal on Optimization, 2011, 21 (1): 57- 81.
doi: 10.1137/100781894 |
| 6 |
Tibshirani R J . Regression shrinkage and selection via the Lasso[J]. Journal of the Royal Statistical Society: Series B, 1996, 58, 267- 288.
doi: 10.1111/j.2517-6161.1996.tb02080.x |
| 7 |
Yuan X . Alternating direction method for covariance selection models[J]. Journal of Scientific Computing, 2012, 51 (2): 261- 273.
doi: 10.1007/s10915-011-9507-1 |
| 8 |
Gabay D , Mercier B . A dual algorithm for the solution of nonlinear variational problems via finite element approximation[J]. Computers and Mathematics with Applications, 1976, 2 (1): 17- 40.
doi: 10.1016/0898-1221(76)90003-1 |
| 9 | Glowinski R , Marrocco A . Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires[J]. Revue Francaise D'automatique, Informatique, Recherche Opérationnelle. Analyse Numérique, 1975, 9, 41- 76. |
| 10 | Boyd S , Parikh N , Chu E , et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends in Machine Learning, 2011, 3 (1): 1- 122. |
| 11 | Eckstein J , Wang Y . Understanding the convergence of the alternating direction method of multipliers: Theoretical and computational perspectives[J]. Pacific Journal of Optimization, 2015, 11 (4): 619- 644. |
| 12 | Glowinski R . On alternating direction methods of multipliers: A historical perspective[J]. Modeling, Simulation and Optimization for Science and Technology, 2014, 34, 59- 82. |
| 13 | Gu Y, Jiang B, Han D. A semi-proximal-based strictly contractive Peaceman-Rachford splitting method[EB/OL]. [2022-10-21]. arXiv: 1506.02221 |
| 14 |
Han D . A survey on some recent developments of alternating direction method of multipliers[J]. Journal of the Operations Research Society of China, 2022, 10 (1): 1- 52.
doi: 10.1007/s40305-021-00368-3 |
| 15 |
Li X , Mo L , Yuan X , et al. Linearized alternating direction method of multipliers for sparse group and fused Lasso models[J]. Computational Statistics and Data Analysis, 2014, 79, 203- 221.
doi: 10.1016/j.csda.2014.05.017 |
| 16 | Yang J , Yuan X . Linearized augmented lagrangian and alternating direction methods for nuclear norm minimization[J]. Mathematics of Computation, 2013, 82 (281): 301- 329. |
| 17 |
Han D , Sun D , Zhang L . Linear rate convergence of the alternating direction method of multipliers for convex composite programming[J]. Mathematics of Operations Research, 2018, 43 (2): 622- 637.
doi: 10.1287/moor.2017.0875 |
| 18 |
He B , Ma F , Yuan X . Optimal linearized alternating direction method of multipliers for convex programming[J]. Computational Optimization and Applications, 2020, 75 (2): 361- 388.
doi: 10.1007/s10589-019-00152-3 |
| 19 |
Li M , Sun D , Toh K C . A majorized ADMM with indefinite proximal terms for linearly constrained convex composite optimization[J]. SIAM Journal on Optimization, 2016, 26 (2): 922- 950.
doi: 10.1137/140999025 |
| 20 |
Gao B , Ma F . Symmetric alternating direction method with indefinite proximal regularization for linearly constrained convex optimization[J]. Journal of Optimization Theory and Applications, 2018, 176 (1): 178- 204.
doi: 10.1007/s10957-017-1207-z |
| 21 |
Jiang F , Wu Z , Cai X . Generalized ADMM with optimal indefinite proximal term for linearly constrained convex optimization[J]. Journal of Industrial and Management Optimization, 2020, 16 (2): 835- 856.
doi: 10.3934/jimo.2018181 |
| 22 |
Chen J , Wang Y , He H , et al. Convergence analysis of positive-indefinite proximal ADMM with a Glowinski's relaxation factor[J]. Numerical Algorithms, 2020, 83 (4): 1415- 1440.
doi: 10.1007/s11075-019-00731-9 |
| 23 |
Tao M . Convergence study of indefinite proximal ADMM with a relaxation factor[J]. Computational Optimization and Applications, 2020, 77 (1): 91- 123.
doi: 10.1007/s10589-020-00206-x |
| 24 | Eckstein J , Bertsekas D P . On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators[J]. Mathematical Programming, 1992, 55 (3): 293- 318. |
| 25 |
He B , Liao L , Han D , et al. A new inexact alternating directions method for monotone variational inequalities[J]. Mathematical Programming, 2002, 92, 103- 118.
doi: 10.1007/s101070100280 |
| 26 |
Eckstein J , Silva P J . A practical relative error criterion for augmented Lagrangians[J]. Mathematical Programming, 2013, 141 (1-2): 319- 348.
doi: 10.1007/s10107-012-0528-9 |
| 27 |
Eckstein J , Yao W . Approximate ADMM algorithms derived from Lagrangian splitting[J]. Computational Optimization and Application, 2017, 68 (2): 363- 405.
doi: 10.1007/s10589-017-9911-z |
| 28 |
Eckstein J , Yao W . Relative-error approximate versions of Douglas-Rachford splitting and special cases of the ADMM[J]. Mathematical Programming, 2018, 170 (2): 417- 444.
doi: 10.1007/s10107-017-1160-5 |
| 29 |
Alves M M , Marcavillaca R T . On inexact relative-error hybrid proximal extragradient, forward-backward and Tseng's modified forward-backward methods with inertial effects[J]. Set-Valued and Variational Analysis, 2020, 28 (2): 301- 325.
doi: 10.1007/s11228-019-00510-7 |
| 30 |
Jiang F , Cai X , Wu Z , et al. Approximate first-order primal-dual algorithms for saddle point problems[J]. Mathematics of Computation, 2021, 90 (329): 1227- 1262.
doi: 10.1090/mcom/3610 |
| 31 |
Jiang F , Wu Z . An inexact symmetric ADMM algorithm with indefinite proximal term for sparse signal recovery and image restoration problems[J]. Journal of Computational and Applied Mathematics, 2023, 417, 114628.
doi: 10.1016/j.cam.2022.114628 |
| 32 |
Xie J , Liao A , Yang X . An inexact alternating direction method of multipliers with relative error criteria[J]. Optimization Letters, 2017, 11 (3): 583- 596.
doi: 10.1007/s11590-016-1021-9 |
| 33 |
Rudin L I , Osher S , Fatemi E . Nonlinear total variation based noise removal algorithms[J]. Physica D: Nonlinear Phenomena, 1992, 60, 259- 268.
doi: 10.1016/0167-2789(92)90242-F |
| 34 |
He H , Han D , Li Z . Some projection methods with the bb step sizes for variational inequalities[J]. Journal of Computational and Applied Mathematics, 2012, 236, 2590- 2604.
doi: 10.1016/j.cam.2011.12.017 |
| [1] | Zilin TAN, Honglin LUO. A second-order splitting method with its application [J]. Operations Research Transactions, 2025, 29(4): 121-140. |
| [2] | Xinqing MENG, Wenxing ZAHNG. An accelerated method for solving a class of linear equality constrained convex optimization [J]. Operations Research Transactions, 2024, 28(1): 1-17. |
| [3] | Jing ZENG, Ruowen DING. Stability of solutions for a class of non-convex vector optimization problems with mapping differences [J]. Operations Research Transactions, 2023, 27(3): 121-128. |
| [4] | Jianwen PENG, Hongwang LEI. A class of inertial symmetric regularization alternating direction method of multipliers for nonconvex two-block optimization [J]. Operations Research Transactions, 2023, 27(3): 37-52. |
| [5] | Jiahao LYU, Honglin LUO, Zehua YANG, Jianwen PENG. A stochastic Bregman ADMM with its application in training sparse structure SVMs [J]. Operations Research Transactions, 2022, 26(2): 16-30. |
| [6] | Jia HU, Tiande GUO, Congying HAN. Mini-batch stochastic block coordinate descent algorithm [J]. Operations Research Transactions, 2022, 26(1): 1-22. |
| [7] | XU Zi, ZHANG Huiling. Optimization algorithms and their complexity analysis for non-convex minimax problems [J]. Operations Research Transactions, 2021, 25(3): 74-86. |
| [8] | Hongwu LI, Min XIE, Rong ZHANG. A proximal gradient method for nonsmooth convex optimization problems [J]. Operations Research Transactions, 2021, 25(1): 61-72. |
| [9] | GUO Ke, WANG Tao, Zhang Youcai. Generalized viscosity approximation method and its application [J]. Operations Research Transactions, 2020, 24(3): 127-140. |
| [10] | JIAN Jinbao, LAO Yixian, CHAO Miantao, MA Guodong. ADMM-SQP algorithm for two blocks linear constrained nonconvex optimization [J]. Operations Research Transactions, 2018, 22(2): 79-92. |
| [11] | HE Bingsheng. My 20 years research on alternating directions method of multipliers [J]. Operations Research Transactions, 2018, 22(1): 1-31. |
| [12] | HE Simai, JIN Yujia, WANG Hua, GE Dongdong. A survey on online learning methods: Thompson sampling and others [J]. Operations Research Transactions, 2017, 21(4): 84-102. |
| [13] | ZHANG Yong, YE Wanzhou. An algorithm for elastic l_2-l_q regularization [J]. Operations Research Transactions, 2016, 20(4): 11-20. |
| [14] | WANG Siqi, XIE Zheng, DAI Li. A kind of inexact parallel splitting method for solving the fairest core in cooperative game [J]. Operations Research Transactions, 2016, 20(2): 105-112. |
| [15] | HE Bingsheng. Modified alternating directions method of multipliers for convex optimization with three separable functions [J]. Operations Research Transactions, 2015, 19(3): 57-70. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||