Operations Research Transactions ›› 2025, Vol. 29 ›› Issue (1): 1-18.doi: 10.15960/j.cnki.issn.1007-6093.2025.01.001
Yuan YUAN1, Yan LAN1, Xin HAN2,*()
Received:
2021-06-07
Online:
2025-03-15
Published:
2025-03-08
Contact:
Xin HAN
E-mail:hanxin@dlut.edu.cn
CLC Number:
Yuan YUAN, Yan LAN, Xin HAN. A survey of scheduling with maintenance periods[J]. Operations Research Transactions, 2025, 29(1): 1-18.
"
算法 | 复杂性 | 问题 | 文献 |
SPT | - | ||
WSPT | - | ||
EDD | - | ||
LPT | - | ||
LS | - | ||
Moore-Hodgson | [ | ||
Johnson Rule | [ | ||
Ratio Rule | [ | ||
Greedy Algorithm | [ | ||
Gonzalez-Sahni | [ | ||
Pinedo-Schrage | [ |
"
问题 | 复杂性 | 文献 |
NP-hard | [ | |
NP-hard | - | |
NP-hard | [ | |
NP-hard | [ | |
NP-hard | [ | |
P(any sequence) | [ | |
P(SPT) | [ | |
P(EDD) | [ | |
P(Moore-Hodgson) | [ | |
NP-hard | [ | |
strongly NP-hard | [ | |
NP-hard | [ | |
NP-hard | [ | |
strongly NP-hard | [ | |
NP-hard | [ | |
NP-hard | [ | |
strongly NP-hard | [ | |
NP-hard | [ | |
P | [ | |
P | [ | |
EDD(if | [ | |
NP-hard | [ |
"
问题 | 算法 | Ratio | 文献 |
SPT | [ | ||
SPT | [ | ||
MSPT | [ | ||
PTAS | [ | ||
WSPT | [ | ||
WSPT, MWSPT | 2 | [ | |
Approximation | 2, | [ | |
Approximation | [ | ||
LPT | [ | ||
FPTAS | [ | ||
Moore | 1, | [ | |
EDD | [ | ||
WSPT | [ | ||
Combination | 2, | [ | |
Approximation | 2, | [ | |
LPT | 2, | [ | |
Johnson Rule | 2, | [ | |
Approximation | [ | ||
Approximation | [ | ||
FPTAS | [ | ||
Johnson Rule | [ | ||
Approximation | [ | ||
Approximation | [ | ||
FPTAS | [ | ||
Approximation | 2, | [ | |
Approximation | [ | ||
Approximation | [ | ||
PTAS | [ | ||
Johnson Rule | 2, | [ | |
Approximation | [ | ||
PTAS | [ | ||
Johnson Rule | 2, | [ | |
Approximation | 2, | [ | |
PTAS | Polynomial of | [ | |
Johnson Rule | [ | ||
Approximation | [ | ||
PTAS | Polynomial of | [ | |
Johnson Rule | 2, | [ | |
Approximation | [ | ||
Approximation | [ | ||
Approximation | [ | ||
PTAS | Polynomial of n | [ | |
Approximation | [ | ||
PTAS | Polynomial of n | [ | |
PTAS | Polynomial of n | [ | |
PTAS | Polynomial of n | [ | |
PTAS | Polynomial of n | [ | |
Approximation | 2, | [ | |
Heuristic | [ | ||
Heuristic | [ | ||
LPT | 2, | [ | |
LS | 2, | [ | |
Heuristic | [ | ||
LS | 2, | [ | |
LPT | 2, | [ | |
MLPT | 2, | [ | |
Heuristic | [ | ||
SPT | [ | ||
SPT | [ | ||
Heuristic | [ | ||
2(best) | [ | ||
LS(best) | 2, | [ | |
LS(best) | 2, | [ | |
Approximation | [ | ||
PTAS | Polynomial of n | ||
Approximation | [ | ||
FPTAS | [ | ||
Approximation | [ | ||
Approximation | 2, | [ | |
Approximation | [ |
"
问题 | Exact | 问题规模 | 文献 |
Branch and Bound | 1 000 jobs | [ | |
Branch and Bound | 1 000 jobs | [ | |
IP | 60 jobs | [ | |
Dynamic Programming | 3 000 jobs, | [ | |
Dynamic Programming | [ | ||
Dynamic Programming | [ | ||
Branch and Bound | 100 jobs, 10 MPs | [ | |
Dynamic Programming | [ | ||
Dynamic Programming | [ | ||
Dynamic Programming | [ | ||
Branch and Bound | 30 jobs | [ | |
Branch and Bound | 25 jobs | [ | |
Branch and Bound | 30 jobs | [ | |
2 BIPs | 120 jobs | [ | |
2 BIPs | 120 jobs | [ | |
4 BIPs | 120 jobs | [ | |
Dynamic Programming | [ | ||
Branch and Bound | 400 jobs | [ | |
2 BIPs | 100 jobs | [ | |
SPT-based | [ | ||
EDD-based | [ | ||
SPT-based | [ | ||
SPT-based | [ | ||
Dynamic Programming | [ | ||
Dynamic Programming | [ | ||
Dynamic Programming | [ |
1 | Hall L A . Approximability of flow shop scheduling[J]. Mathematical Programming, 1998, 82 (1): 175- 190. |
2 |
Williamson D P , Hall L A , Hoogeveen J A , et al. Short shop schedules[J]. Operations Research, 1997, 45 (2): 288- 294.
doi: 10.1287/opre.45.2.288 |
3 |
Adiri I , Bruno J , Frostig E , et al. Single machine flow-time scheduling with a single breakdown[J]. Acta Informatica, 1989, 26 (7): 679- 696.
doi: 10.1007/BF00288977| |
4 |
Lee C Y . Machine scheduling with an availability constraint[J]. Journal of Global Optimization, 1996, 9 (3-4): 395- 416.
doi: 10.1007/BF00121681 |
5 |
Lee C Y . Two-machine flowshop scheduling with availability constraints[J]. European Journal of Operational Research, 1999, 114 (2): 420- 429.
doi: 10.1016/S0377-2217(97)00452-9 |
6 |
Yang D L , Hung C L , Hsu C J , et al. Minimizing the makespan in a single machine scheduling problem with a flexible maintenance[J]. Journal of the Chinese Institute of Industrial Engineers, 2002, 19 (1): 63- 66.
doi: 10.1080/10170660209509183 |
7 |
Kubzin M A , Vitaly A S . Planning machine maintenance in two-machine shop scheduling[J]. Operations Research, 2006, 54 (4): 789- 800.
doi: 10.1287/opre.1060.0301 |
8 |
Lee C Y , Leon V J . Machine scheduling with a rate-modifying activity[J]. European Journal of Operational Research, 2001, 128 (1): 119- 128.
doi: 10.1016/S0377-2217(99)00066-1 |
9 | Graham R L. Bounds on the performance of scheduling algorithms [M]//Computer and Job Scheduling Theory. New York: John Wiley & Sons, 1976: 165-227. |
10 | Graham R l , Lawler E L , Lenstra J K , et al. Optimization and approximation in deterministic sequencing and scheduling: A survey[J]. Annals of Discrete Mathematics, 1979, 5, 287- 326. |
11 |
Moore J M . An n job, one machine sequencing algorithm for minimizing the number of late jobs[J]. Management Science, 1968, 15 (1): 102- 109.
doi: 10.1287/mnsc.15.1.102 |
12 |
Johnson S M . Optimal two-and three-stage production schedules with setup times included[J]. Naval Research Logistics Quarterly, 1954, 1 (1): 61- 68.
doi: 10.1002/nav.3800010110 |
13 |
Lee C Y . Minimizing the makespan in the two-machine flowshop scheduling problem with an availability constraint[J]. Operations Research Letters, 1997, 20 (3): 129- 139.
doi: 10.1016/S0167-6377(96)00041-7 |
14 |
Chen B , Strusevich V A . Approximation algorithms for three-machine open shop scheduling[J]. ORSA Journal on Computing, 1993, 5 (3): 321- 326.
doi: 10.1287/ijoc.5.3.321 |
15 |
Strusevich V A . A greedy open shop heuristic with job priorities[J]. Annals of Operations Research, 1998, 83, 253- 270.
doi: 10.1023/A:1018964131329 |
16 |
Gonzalez T , Sahni S . Open shop scheduling to minimize finish time[J]. Journal of the ACM, 1976, 23 (4): 665- 679.
doi: 10.1145/321978.321985 |
17 | Pinedo M, Schrage L. Stochastic shop scheduling: A survey [M]//Deterministic and Stochastic Scheduling. Dordrecht: Springer, 1982. |
18 | Sevastianov S V , Woeginger G J . Makespan minimization in open shops: A polynomial time approximation scheme[J]. Mathematical Programming, 1998, 82 (1): 191- 198. |
19 |
Lee C Y , Lei L , Pinedo M . Current trends in deterministic scheduling[J]. Annals of Operations Research, 1997, 70, 1- 41.
doi: 10.1023/A:1018909801944 |
20 |
Sanlaville E , Schmidt G . Machine scheduling with availability constraints[J]. Acta Informatica, 1998, 35 (9): 795- 811.
doi: 10.1007/s002360050143 |
21 |
Schmidt G . Scheduling with limited machine availability[J]. European Journal of Operational Research, 2000, 121 (1): 1- 15.
doi: 10.1016/S0377-2217(98)00367-1 |
22 | Ma Y , Chu C B , Zuo C R . A survey of scheduling with deterministic machine availability constraints[J]. Computers & Industrial Engineering, 2010, 58 (2): 199- 211. |
23 |
Assia S , Ikram A , Abdellah B , et al. Joint scheduling of jobs and variable maintenance activities in the flowshop sequencing problems: Review, classification and opportunities[J]. International Journal of Engineering Research in Africa, 2018, 39, 170- 190.
doi: 10.4028/www.scientific.net/JERA.39.170 |
24 |
Lee C Y , Liman S D . Single machine flow-time scheduling with scheduled maintenance[J]. Acta Informatica, 1992, 29 (4): 375- 382.
doi: 10.1007/BF01178778 |
25 |
Sadfi C , Penz B , Rapine C , et al. An improved approximation algorithm for the single machine total completion time scheduling problem with availability constraints[J]. European Journal of Operational Research, 2005, 161 (1): 3- 10.
doi: 10.1016/j.ejor.2003.08.026 |
26 |
He Y , Zhong W , Gu H . Improved algorithms for two single machine scheduling problems[J]. Theoretical Computer Science, 2006, 363 (3): 257- 265.
doi: 10.1016/j.tcs.2006.04.014 |
27 |
Kacem I , Chu C . Worst-case analysis of the WSPT and MWSPT rules for single machine scheduling with one planned setup period[J]. European Journal of Operational Research, 2008, 187 (3): 1080- 1089.
doi: 10.1016/j.ejor.2006.06.062 |
28 | Kacem I . Approximation algorithm for the weighted flow-time minimization on a single machine with a fixed non-availability interval[J]. Computers & Industrial Engineering, 2008, 54 (3): 401- 410. |
29 |
Kacem I , Chu C . Efficient branch-and-bound algorithm for minimizing the weighted sum of completion times on a single machine with one availability constraint[J]. International Journal of Production Economics, 2008, 112 (1): 138- 150.
doi: 10.1016/j.ijpe.2007.01.013 |
30 | Kacem I , Chu C , Souissi A . Single-machine scheduling with an availability constraint to minimize the weighted sum of the completion times[J]. Computers & Operations Research, 2008, 35 (3): 827- 844. |
31 |
Kellerer H , Strusevich V A . Fully polynomial approximation schemes for a symmetric quadratic knapsack problem and its scheduling applications[J]. Algorithmica, 2010, 57 (4): 769- 795.
doi: 10.1007/s00453-008-9248-1 |
32 |
He Y , Hi M , Cheng T C E . Single machine scheduling with a restricted rate-modifying activity[J]. Naval Research Logistics, 2005, 52 (4): 361- 369.
doi: 10.1002/nav.20083 |
33 |
Breit J , Schmidt G , Strusevich V A . Non-preemptive two-machine open shop scheduling with non-availability constraints[J]. Mathematical Methods of Operations Research, 2003, 57 (2): 217- 234.
doi: 10.1007/s001860200267 |
34 |
Wang G , Sun H , Chu C . Preemptive with availability constraints to minimize total weighted completion times[J]. Annals of Operations Research, 2005, 133, 183- 192.
doi: 10.1007/s10479-004-5032-z |
35 | Liao C J , Chen W J . Single-machine scheduling with periodic maintenance and nonresumable jobs[J]. Computers & Operations Research, 2003, 30 (9): 1335- 1347. |
36 |
Chen W J . Minimizing total flow time in the single-machine scheduling problem with periodic maintenance[J]. Journal of the Operational Research Society, 2006, 57 (4): 410- 415.
doi: 10.1057/palgrave.jors.2601998 |
37 | Chen W J . An efficient algorithm for scheduling jobs on a machine with periodic maintenance[J]. The International Journal of Advanced Manufacturing Technology, 2007, 34 (11): 1173- 1182. |
38 | Ji M , He Y , Cheng T C E . Single-machine scheduling with periodic maintenance to minimize makespan[J]. Computers & Operations Research, 2007, 34 (6): 1764- 1770. |
39 |
Xu D , Yin Y . On single-machine scheduling with flexible maintenance activities[J]. The International Journal of Advanced Manufacturing Technology, 2011, 56 (9-12): 1139- 1145.
doi: 10.1007/s00170-011-3249-y |
40 |
Yu X , Zhang Y , Steiner G . Single-machine scheduling with periodic maintenance to minimize makespan revisited[J]. Journal of Scheduling, 2014, 17 (3): 263- 270.
doi: 10.1007/s10951-013-0350-0 |
41 |
Kubiak W , Błaewicz J , Formanowicz P , et al. Two-machine flow shops with limited machine availability[J]. European Journal of Operational Research, 2002, 136 (3): 528- 540.
doi: 10.1016/S0377-2217(01)00083-2 |
42 |
Cheng T C E , Wang G . An improved heuristic for two-machine flowshop scheduling with an availability constraint[J]. Operations Research Letters, 2000, 26 (5): 223- 229.
doi: 10.1016/S0167-6377(00)00033-X |
43 | Breit J . A polynomial-time approximation scheme for the two-machine flow shop scheduling problem with an availability constraint[J]. Computers & Operations Research, 2006, 33 (8): 2143- 2153. |
44 |
Ng C T , Kovalyov M Y . An FPTAS for scheduling a two-machine flowshop with one unavailability interval[J]. Naval Research Logistics, 2004, 51 (3): 307- 315.
doi: 10.1002/nav.10107 |
45 |
Błażewicz J , Breit J , Formanowicz , et al. Heuristic algorithms for the two-machine flowshop with limited machine availability[J]. Omega, 2001, 29 (6): 599- 608.
doi: 10.1016/S0305-0483(01)00048-2 |
46 | Kubzin M A , Potts C N , Strusevich V A . Approximation results for flow shop scheduling problems with machine availability constraints[J]. Computers & Operations Research, 2009, 36 (2): 379- 390. |
47 |
Hadda H . An improved algorithm for the two machine flow shop problem with several availability constraints[J]. 4OR, 2010, 8 (3): 271- 280.
doi: 10.1007/s10288-010-0119-7 |
48 |
Hadda H . A polynomial-time approximation scheme for the two machine flow shop problem with several availability constraints[J]. Optimization Letters, 2012, 6 (3): 559- 569.
doi: 10.1007/s11590-011-0281-7 |
49 |
Hadda H . A ($\frac{4}{3}$)-approximation algorithm for a special case of the two machine flow shop problem with several availability constraints[J]. Optimization Letters, 2009, 3 (4): 583- 592.
doi: 10.1007/s11590-009-0137-6 |
50 |
Hadda H . A PTAS for a particular case of the two-machine flow shop with limited machine availability[J]. Journal of Mathematical Modelling and Algorithms in Operations Research, 2014, 13 (4): 511- 522.
doi: 10.1007/s10852-013-9245-5 |
51 |
Cheng T C E , Wang G . Two-machine flowshop scheduling with consecutive availability constraints[J]. Information Processing Letters, 1999, 71 (2): 49- 54.
doi: 10.1016/S0020-0190(99)00094-0 |
52 |
Hadda H , Dridi N , Hajri-Gabouj S . An improved heuristic for two-machine flow shop scheduling with an availability constraint and nonresumable jobs[J]. 4OR, 2010, 8 (1): 87- 99.
doi: 10.1007/s10288-009-0102-3 |
53 |
Allaoui H , Artiba A , Elmaghraby S E , et al. Scheduling of a two-machine flow shop with availability constraints on the first machine[J]. Intenational Journal of Production Economics, 2006, 99, 16- 27.
doi: 10.1016/j.ijpe.2004.12.003 |
54 | Werra D . Graph-Theoretical Models for Preemptive Scheduling[M]. Amsterdam: Elsevier, 1989. |
55 |
Soper A J . A cyclical search for the two machine flow shop and open shop to minimise finishing time[J]. Journal of Scheduling, 2015, 18 (3): 311- 314.
doi: 10.1007/s10951-013-0356-7 |
56 |
Breit J , Schmidt G , Strusevich V A . Two-machine open shop scheduling with an availability constraint[J]. Operations Research Letters, 2001, 29 (2): 65- 77.
doi: 10.1016/S0167-6377(01)00079-7 |
57 |
Lu L , Posner M E . An NP-hard open shop scheduling problem with polynomial average time complexity[J]. Mathematics of Operations Research, 1993, 18 (1): 12- 38.
doi: 10.1287/moor.18.1.12 |
58 |
Lorigeon T , Billaut J C , Bouquard J L . A dynamic programming algorithm for scheduling jobs in a two-machine open shop with an availability constraint[J]. Journal of the Operational Research Society, 2002, 53 (11): 1239- 1246.
doi: 10.1057/palgrave.jors.2601421 |
59 |
Kubzin M A , Strusevich V A , Breit J , et al. Polynomial-time approximation schemes for twomachine open shop scheduling with nonavailability constraints[J]. Naval Research Logistics, 2006, 53 (1): 16- 23.
doi: 10.1002/nav.20122 |
60 |
Yuan Y , Lan Y , Ding N , et al. A PTAS for non-resumable open shop scheduling with an availability constraint[J]. Journal of Combinatorial Optimization, 2022, 43, 350- 362.
doi: 10.1007/s10878-021-00773-7 |
61 |
Chen J S . Single-machine scheduling with flexible and periodic maintenance[J]. Journal of the Operational Research Society, 2006, 57 (6): 703- 710.
doi: 10.1057/palgrave.jors.2602043 |
62 |
Chen J S . Optimization models for the machine scheduling problem with a single flexible maintenance activity[J]. Engineering Optimization, 2006, 38 (1): 53- 71.
doi: 10.1080/03052150500270594 |
63 |
Chen J S . Scheduling of nonresumable jobs and flexible maintenance activities on a single machine to minimize makespan[J]. European Journal of Operational Research, 2008, 190 (1): 90- 102.
doi: 10.1016/j.ejor.2007.06.029 |
64 |
Xu D , Yin Y , Li H . A note on scheduling of nonresumable jobs and flexible maintenance activities on a single machine to minimize makespan[J]. European Journal of Operational Research, 2009, 197 (2): 825- 827.
doi: 10.1016/j.ejor.2008.07.021 |
65 |
Xu D , Yin Y . On single-machine scheduling with flexible maintenance activities[J]. The International Journal of Advanced Manufacturing Technology, 2011, 56 (9-12): 1139- 1145.
doi: 10.1007/s00170-011-3249-y |
66 | Yang S , Ma Y , Xu D , et al. Minimizing total completion time on a single machine with a flexible maintenance activity[J]. Computers & Operations Research, 2011, 38 (4): 755- 770. |
67 |
Mosheiov G , Sarig A , Strusevich V A , et al. Two-machine flow shop and open shop scheduling problems with a single maintenance window[J]. European Journal of Operational Research, 2018, 271 (2): 388- 400.
doi: 10.1016/j.ejor.2018.04.019 |
68 | Aggoune R, Abdel H, Portmann M C. Genetic algorithms for the flow shop scheduling problem with availability constraints [C]//2001 IEEE International Conference on Systems, Man and Cybernetics, 2001: 2546-2551. |
69 |
Aggoune R . Minimizing the makespan for the flow shop scheduling problem with availability constraints[J]. European Journal of Operational Research, 2004, 153 (3): 534- 543.
doi: 10.1016/S0377-2217(03)00261-3 |
70 | Luo W, Chen L, Zhang G. Approximation algorithms for scheduling with a variable machine maintenance [C]//International Conference on Algorithmic Applications in Management, 2010: 209-219. |
71 | Ying K , Lu C , Chen J . Exact algorithms for single-machine scheduling problems with a variable maintenance[J]. Computers & Industrial Engineering, 2016, 98, 427- 433. |
72 |
He Y , Ji M , Cheng T C E . Single machine scheduling with a restricted rate-modifying activity[J]. Naval Research Logistics, 2005, 52 (4): 361- 369.
doi: 10.1002/nav.20083 |
[1] | Jie GAO, Juan ZOU, Yukang SUI, Yuzhong ZHANG. Unrelated parallel-machine scheduling with deteriorating maintenance activities and job rejection [J]. Operations Research Transactions, 2023, 27(3): 137-149. |
[2] | An ZHANG, Yong CHEN, Guangting CHEN, Zhanwen CHEN, Qiaojun SHU, Guohui LIN. Maximum matching based approximation algorithms for precedence constrained scheduling problems [J]. Operations Research Transactions, 2022, 26(3): 57-74. |
[3] | Dong WANG, Ganggang LI, Wenchang LUO. Approximation algorithm for mixed batch scheduling on identical machines for jobs with arbitrary sizes [J]. Operations Research Transactions, 2022, 26(3): 133-142. |
[4] | Chunyan BI, Long WAN, Wenchang LUO. Approximation algorithm for uniform parallel machine scheduling with release dates and job rejection [J]. Operations Research Transactions, 2022, 26(2): 73-82. |
[5] | Jianping LI, Lijian CAI, Junran LICHEN, Pengxiang PAN. The constrained multi-sources eccentricity augmentation problems [J]. Operations Research Transactions, 2022, 26(1): 60-68. |
[6] | Hua CHEN, Guochuan ZHANG. A survey on approximation algorithms for one dimensional bin packing [J]. Operations Research Transactions, 2022, 26(1): 69-84. |
[7] | Wenjie LIU, Dongmei ZHANG, Peng ZHANG, Juan ZOU. The seeding algorithm for $\mu$-similar Bregman divergences $k$-means problem with penalties [J]. Operations Research Transactions, 2022, 26(1): 99-112. |
[8] | Jiachen JU, Qian LIU, Zhao ZHANG, Yang ZHOU. A local search analysis for the uniform capacitated $k$-means problem with penalty [J]. Operations Research Transactions, 2022, 26(1): 113-124. |
[9] | Xiaowei LI, Xiayan CHENG, Rongheng LI. An approximation algorithm for Robust k-product facility location problem with linear penalties [J]. Operations Research Transactions, 2021, 25(4): 31-44. |
[10] | Xiaoguang BAO, Chao LU, Dongmei HUANG, Wei YU. Approximation algorithm for min-max cycle cover problem on a mixed graph [J]. Operations Research Transactions, 2021, 25(1): 107-113. |
[11] | Jianfeng REN, Xiaoyun TIAN. Squared metric facility location problem with outliers [J]. Operations Research Transactions, 2021, 25(1): 114-122. |
[12] | ZHANG Yuzhong. A survey on job scheduling with rejection [J]. Operations Research Transactions, 2020, 24(2): 111-130. |
[13] | LIU Xiaoxia, YU Shanshan, LUO Wenchang. Approximation algorithms for single machine parallelbatch scheduling with release dates subject to the number of rejected jobs not exceeding a given threshold [J]. Operations Research Transactions, 2020, 24(1): 131-139. |
[14] | WANG Yizhan, ZHANG An, CHEN Yong, CHEN Guangting. An approximation algorithm for reclaimer scheduling [J]. Operations Research Transactions, 2020, 24(1): 147-154. |
[15] | ZHANG Guochuan, CHEN Lin. The load balancing problem [J]. Operations Research Transactions, 2019, 23(3): 1-14. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||