运筹学学报 ›› 2019, Vol. 23 ›› Issue (1): 90-96.doi: 10.15960/j.cnki.issn.1007-6093.2019.01.010

• 运筹学 • 上一篇    下一篇

补图具有悬挂点且连通的图的最小特征值

余桂东1,2,*, 孙威1, 芦兴庭1   

  1. 1. 安庆师范大学数学与计算科学学院, 安徽安庆 246133;
    2. 合肥幼儿师范高等专科学校基础部, 合肥 230013
  • 收稿日期:2017-03-09 出版日期:2019-03-15 发布日期:2019-03-15
  • 通讯作者: 余桂东 E-mail:guidongy@163.com
  • 基金资助:

    国家自然科学基金(No.11671164),安徽省自然科学基金(No.1808085MA04),安徽省高校自然科学基金(No.KJ2017A362)

The least eignvalue of the graphs whose complements are connected and have pendant vertices

YU Guidong1,2,*, SUN Wei1, LU Xingting1   

  1. 1. School of Mathematics and Computation Sciences, Anqing Normal University, Anqing 246133, Anhui, China;
    2. Basic Department, Hefei Preschool Education College, Hefei 230013, China
  • Received:2017-03-09 Online:2019-03-15 Published:2019-03-15

摘要:

图的最小特征值定义为图的邻接矩阵的最小特征值,它是刻画图的结构性质的重要参数.在给定阶数且补图为具有悬挂点的连通图的图类中,刻画了最小特征值达极小的唯一图,并给出了这类图最小特征值的下界.

关键词: 图, 补图, 邻接矩阵, 最小特征值

Abstract:

The least eigenvalue of the graph is defined as the smallest eigenvalue of adjacency matrix of the graph, which is an important algebraic parameter on characterizing structural property of graphs. In this paper, we characterize the unique graph with the minimum least eigenvalue among all graphs of fixed order whose complements are connected and have pendent vertices, and present the lower bound of the least eigenvalue of such classes of graphs.

Key words: graph, complement, adjacency matrix, the least eigenvalue

中图分类号: