运筹学学报(中英文) ›› 2025, Vol. 29 ›› Issue (4): 121-140.doi: 10.15960/j.cnki.issn.1007-6093.2025.04.011
收稿日期:2022-11-16
出版日期:2025-12-15
发布日期:2025-12-11
通讯作者:
罗洪林
E-mail:luohonglin@cqnu.edu.cn
基金资助:Received:2022-11-16
Online:2025-12-15
Published:2025-12-11
Contact:
Honglin LUO
E-mail:luohonglin@cqnu.edu.cn
摘要:
本文针对一类大规模可分非凸优化问题, 结合三次正则化和信赖域方法求解子问题, 同时利用非精确Hessian信息提出二阶分裂算法, 证明了算法的全局收敛性, 并刻画了算法的复杂度
中图分类号:
谭子琳, 罗洪林. 二阶分裂算法及其应用[J]. 运筹学学报(中英文), 2025, 29(4): 121-140.
Zilin TAN, Honglin LUO. A second-order splitting method with its application[J]. Operations Research Transactions, 2025, 29(4): 121-140.
表1
目标函数信息"
| 1 | GlowinskiR,MarrocoA.Sur l'approximation, paréléments finis d'ordre un, et la résolution, par pénalisation-dualitéd'une classe de problèmes de Dirichlet non linéaires[J].Journal of Equine Veterinary Science,1975,2(R2):41-76. |
| 2 |
GabayD,MercierB.A dual algorithm for the solution of nonlinear variational problems via finite element approximation[J].Computers Mathematics with Applications,1976,2(1):17-40.
doi: 10.1016/0898-1221(76)90003-1 |
| 3 | Dhar S, Yi C, Ramakrishnan N, et al. ADMM based scalable machine learning on Spark[C]//IEEE International Conference on Big Data, 2015: 1174-1182. |
| 4 |
YangQ,ChenG,WangT.ADMM-based distributed algorithm for economic dispatch in power systems with both packet drops and communication delays[J].IEEE/CAA Journal of Automatica Sinica,2020,7(3):842-852.
doi: 10.1109/JAS.2020.1003156 |
| 5 |
SchizasD,RibeiroA,GiannakisgB.Consensus in ad hoc WSNs with noisy links-part Ⅰ: Distributed estimation of deterministic signals[J].IEEE Transactions on Signal Processing,2008,56(1):350-364.
doi: 10.1109/TSP.2007.906734 |
| 6 | Huebner N, Rink Y, Suriyah M, et al. Distributed AC-DC optimal power flow in the European transmission grid with ADMM[C]//55th International Universities Power Engineering Conference, 2020: 1-6. |
| 7 | Xu P, Roosta-Khorasani F, Mahoney M W. Second-order optimization for non-convex machine learning: An empirical study[C]//The 2020 SIAM International Conference on Data Mining, 2020: 199-207. |
| 8 |
KanK,FungS W,RuthottoL.PNKH-B: A projected newton–-Krylov method for large-scale bound-constrained optimization[J].SIAM Journal on Scientific Computing,2021,43(5):704-726.
doi: 10.1137/20M1341428 |
| 9 | WangF H,CaoW F,XuZ B.Convergence of multi-block Bregman ADMM for nonconvex composite problems[J].Science China (Information Sciences),2018,61(12):1-12. |
| 10 |
CurtisF E,RobinsonD P,RoyerC W,et al.Trust-region Newton-CG with strong second-order complexity guarantees for nonconvex optimization[J].SIAM Journal on Optimization,2021,31(1):518-544.
doi: 10.1137/19M130563X |
| 11 | GouldN I,RobinsonD P,ThorneH S.On solving trust-region and other regularised subproblems in optimization[J].Mathematical Programming,2010,2(1):21-57. |
| 12 |
HazanE,KorenT.A linear-time algorithm for trust region problems[J].Mathematical Programming,2016,158(1-2):363-381.
doi: 10.1007/s10107-015-0933-y |
| 13 |
NesterovY,PolyakB T.Cubic regularization of Newton method and its global performance[J].Mathematical Programming,2006,108(1):177-205.
doi: 10.1007/s10107-006-0706-8 |
| 14 |
CartisC,GouldN,TointP L.Adaptive cubic regularisation methods for unconstrained optimization, Part Ⅰ: Motivation, convergence and numerical results[J].Mathematical Programming,2011,127(2):245-295.
doi: 10.1007/s10107-009-0286-5 |
| 15 |
JiangB,LinT,MaS,et al.Structured nonconvex and nonsmooth optimization: Algorithms and iteration complexity analysis[J].Computational Optimization and Applications,2019,72,115-157.
doi: 10.1007/s10589-018-0034-y |
| 16 |
AravkinA Y,BaraldiR,OrbanD.A proximal quasi-Newton trust-region method for nonsmooth regularized optimization[J].SIAM Journal on Optimization,2022,32(2):900-929.
doi: 10.1137/21M1409536 |
| 17 | XuP,RoostaF,MahoneyM W.Newton-type methods for non-convex optimization under inexact Hessian information[J].Mathematical Programming,2020,25(3):78-92. |
| 18 |
ZhangY,ZhangN,SunD,et al.An efficient Hessian based algorithm for solving large-scale sparse group Lasso problems[J].Mathematical Programming,2020,179,223-263.
doi: 10.1007/s10107-018-1329-6 |
| 19 | WangF,CaoW,XuZ.Convergence of multi-block Bregman ADMM for nonconvex composite problems[J].Science China Information Sciences,2018,61(12):122-148. |
| 20 |
BaiJ,HagerW W,ZhangH.An inexact accelerated stochastic ADMM for separable convex optimization[J].Computational Optimization and Applications,2022,81,479-518.
doi: 10.1007/s10589-021-00338-8 |
| 21 | BaiJ,ChangX,LiJ,et al.Convergence revisit on generalized symmetric ADMM[J].SIAM Journal on Optimization,2021,70,149-168. |
| 22 |
BaiJ,LiJ,XuF,et al.Generalized symmetric ADMM for separable convex optimization[J].Computational Optimization and Applications,2018,70,129-170.
doi: 10.1007/s10589-017-9971-0 |
| 23 | CartisC,GouldN,TointP L.Adaptive cubic regularisation methods for unconstrained optimization. Part Ⅱ: Worst-case function-and derivative-evaluation complexity[J].Mathematical Programming,2011,127(2):295-319. |
| 24 |
CartisC,GouldN,TointP L.Complexity bounds for second-order optimality in unconstrained optimization[J].Journal of Complexity,2012,28(1):93-108.
doi: 10.1016/j.jco.2011.06.001 |
| 25 |
MoréJ J,SorensenD C.Computing a trust region step[J].SIAM Journal on Scientific Computing,1983,4(3):553-572.
doi: 10.1137/0904038 |
| 26 |
SteihaugT.The conjugate gradient method and trust regions in large scale optimization[J].SIAM Journal on Numerical Analysis,1983,20(3):626-637.
doi: 10.1137/0720042 |
| 27 |
GoldsteinT,O'DonoghueB,SetzerS,et al.Fast alternating direction optimization methods[J].SIAM Journal on Imaging Sciences,2014,7(3):1588-1623.
doi: 10.1137/120896219 |
| 28 |
CartisC,GouldN,TointP L.On the evaluation complexity of composite function minimization with applications to nonconvex nonlinear programming[J].SIAM Journal on Optimization,2011,21(4):1721-1739.
doi: 10.1137/11082381X |
| [1] | 刘鹏杰, 江羡珍, 宋丹. 一类具有充分下降性的谱共轭梯度法[J]. 运筹学学报, 2022, 26(4): 87-97. |
| [2] | 单锡泉, 李梅霞, 刘瑾瑜. 求解张量随机互补问题的光滑牛顿算法[J]. 运筹学学报, 2022, 26(2): 128-136. |
| [3] | 张慧玲, 赛·闹尔再, 吴晓云. 修正PRP共轭梯度方法求解无约束最优化问题[J]. 运筹学学报, 2022, 26(2): 64-72. |
| [4] | 黎健玲, 张辉, 杨振平, 简金宝. 非线性半定规划一个全局收敛的无罚无滤子SSDP算法[J]. 运筹学学报, 2018, 22(4): 1-16. |
| [5] | 邵淑婷, 杜守强. 求解一类特殊非光滑极大值函数方程的光滑保守DPRP共轭梯度法[J]. 运筹学学报, 2018, 22(3): 69-78. |
| [6] | Tsegay Giday Woldu, 张海斌, 张鑫, 张芳. 一种求解非线性无约束优化问题的充分下降的共轭梯度法[J]. 运筹学学报, 2018, 22(3): 59-68. |
| [7] | 陈中文, 赵奇, 卞凯. 非线性半定规划的逐次线性化柔性惩罚法[J]. 运筹学学报, 2017, 21(2): 84-100. |
| [8] | 杭丹, 颜世建. 非单调带参数Perry-Shanno无记忆拟牛顿法的收敛性[J]. 运筹学学报, 2016, 20(4): 85-92. |
| [9] | 马国栋, 简金宝. 不等式约束优化一个可行序列线性方程组算法[J]. 运筹学学报, 2015, 19(4): 48-58. |
| [10] | 万龙. 有关单机两代理排序问题的两个结果[J]. 运筹学学报, 2015, 19(2): 54-60. |
| [11] | 万龙. 二阶数乘问题的一个最优算法[J]. 运筹学学报, 2014, 18(3): 99-103. |
| [12] | 赵奇, 张燕. 求解极小极大问题的非单调过滤算法[J]. 运筹学学报, 2012, 16(2): 91-104. |
| [13] | 张雨浓, 李学忠, 张智军, 李钧. 一种基于LVI求解二次规划问题的数值算法[J]. 运筹学学报, 2012, 16(1): 21-30. |
| [14] | 简金宝, 韦小鹏, 曾汉君, 潘华琴. 一般约束优化基于识别函数的模松弛算法[J]. 运筹学学报, 2011, 15(2): 28-44. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
