[1] Glowinski R, Marroco A. Sur l’approximation, paréléments finis d’ordre un, et la résolution, par pénalisation-dualitéd’une classe de problèmes de Dirichlet non linéaires [J]. Journal of Equine Veterinary Science, 1975, 2(R2): 41-76. [2] Gabay D, Mercier B. A dual algorithm for the solution of nonlinear variational problems via finite element approximation [J]. Computers Mathematics with Applications, 1976, 2(1): 17-40. [3] Dhar S, Yi C, Ramakrishnan N, et al. ADMM based scalable machine learning on Spark [C]//IEEE International Conference on Big Data, 2015: 1174-1182. [4] Yang Q, Chen G, Wang T. ADMM-based distributed algorithm for economic dispatch in power systems with both packet drops and communication delays [J]. IEEE/CAA Journal of Automatica Sinica, 2020, 7(3): 842-852. [5] Schizas D, Ribeiro A, Giannakisg B. Consensus in ad hoc WSNs with noisy links-part I: Distributed estimation of deterministic signals [J]. IEEE Transactions on Signal Processing, 2008, 56(1): 350-364. [6] Huebner N, Rink Y, Suriyah M, et al. Distributed AC-DC optimal power flow in the European transmission grid with ADMM [C]//55th International Universities Power Engineering Conference, 2020: 1-6. [7] Xu P, Roosta-Khorasani F, Mahoney M W. Second-order optimization for non-convex machine learning: An empirical study [C]//The 2020 SIAM International Conference on Data Mining, 2020: 199-207. [8] Kan K, Fung S W, Ruthotto L. PNKH-B: A projected newton|Krylov method for large-scale bound-constrained optimization [J]. SIAM Journal on Scientific Computing, 2021, 43(5): 704- 726. [9] Wang F H, Cao W F, Xu Z B. Convergence of multi-block Bregman ADMM for nonconvex composite problems [J] . Science China (Information Sciences), 2018, 61(12): 1-12. [10] Curtis F E, Robinson D P, Royer C W, et al. Trust-region Newton-CG with strong secondorder complexity guarantees for nonconvex optimization [J]. SIAM Journal on Optimization, 2021, 31(1): 518-544. [11] Gould N I, Robinson D P, Thorne H S. On solving trust-region and other regularised subproblems in optimization [J]. Mathematical Programming, 2010, 2(1): 21-57. [12] Hazan E, Koren T. A linear-time algorithm for trust region problems [J]. Mathematical Programming, 2016, 158(1-2): 363-381. [13] Nesterov Y, Polyak B T. Cubic regularization of Newton method and its global performance [J]. Mathematical Programming, 2006, 108(1): 177-205. [14] Cartis C, Gould N, Toint P L. Adaptive cubic regularisation methods for unconstrained optimization, Part I: Motivation, convergence and numerical results [J]. Mathematical Programming, 2011, 127(2): 245-295. [15] Jiang B, Lin T, Ma S, et al. Structured nonconvex and nonsmooth optimization: Algorithms and iteration complexity analysis [J]. Computational Optimization and Applications, 2019, 72: 115-157. [16] Aravkin A Y, Baraldi R, Orban D. A proximal quasi-Newton trust-region method for nonsmooth regularized optimization [J]. SIAM Journal on Optimization, 2022, 32(2): 900-929. [17] Xu P, Roosta F, Mahoney M W. Newton-type methods for non-convex optimization under inexact Hessian information [J]. Mathematical Programming, 2020, 25(3): 78-92. [18] Zhang Y, Zhang N, Sun D, et al. An efficient Hessian based algorithm for solving large-scale sparse group Lasso problems [J]. Mathematical Programming, 2020, 179: 223-263. [19] Wang F, Cao W, Xu Z. Convergence of multi-block Bregman ADMM for nonconvex composite problems [J]. Science China Information Sciences, 2018, 61(12): 122-148. [20] Bai J, Hager W W, Zhang H. An inexact accelerated stochastic ADMM for separable convex optimization [J]. Computational Optimization and Applications, 2022, 81: 479-518. [21] Bai J, Chang X, Li J, et al. Convergence revisit on generalized symmetric ADMM [J]. SIAM Journal on Optimization, 2021, 70: 149-168. [22] Bai J, Li J, Xu F, et al. Generalized symmetric ADMM for separable convex optimization [J]. Computational Optimization and Applications, 2018, 70: 129-170. [23] Cartis C, Gould N, Toint P L. Adaptive cubic regularisation methods for unconstrained optimization. Part II: Worst-case function-and derivative-evaluation complexity [J]. Mathematical Programming, 2011, 127(2): 295-319. [24] Cartis C, Gould N, Toint P L. Complexity bounds for second-order optimality in unconstrained optimization [J]. Journal of Complexity, 2012, 28(1): 93-108. [25] Moré J J, Sorensen D C. Computing a trust region step [J]. SIAM Journal on Scientific Computing, 1983, 4(3): 553-572. [26] Steihaug T. The conjugate gradient method and trust regions in large scale optimization [J]. SIAM Journal on Numerical Analysis, 1983, 20(3): 626-637. [27] Goldstein T, O’Donoghue B, Setzer S, et al. Fast alternating direction optimization methods [J]. SIAM Journal on Imaging Sciences, 2014, 7(3): 1588-1623. [28] Cartis C, Gould N, Toint P L. On the evaluation complexity of composite function minimization with applications to nonconvex nonlinear programming [J]. SIAM Journal on Optimization, 2011, 21(4): 1721-1739. |