运筹学学报(中英文) ›› 2025, Vol. 29 ›› Issue (4): 121-140.doi: 10.15960/j.cnki.issn.1007-6093.2025.04.011

• • 上一篇    

二阶分裂算法及其应用

谭子琳, 罗洪林†   

  1. 重庆师范大学数学科学学院, 重庆 401331
  • 收稿日期:2022-11-16 发布日期:2025-12-11
  • 通讯作者: 罗洪林 E-mail:luohonglin@cqnu.edu.cn
  • 基金资助:
    国家自然科学基金(Nos.11991024,11771064),重庆市创新领军人才团队项目(No.CQYC20210309536),重庆市高校创新研究群体项目(No.20A110029),重庆市自然科学基金(No.KJZD-K 202500507)

A second-order splitting method with its application

TAN Zilin, LUO Honglin†   

  1. School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, China
  • Received:2022-11-16 Published:2025-12-11

摘要: 本文针对一类大规模可分非凸优化问题,结合三次正则化和信赖域方法求解子问题, 同时利用非精确Hessian信息提出二阶分裂算法, 证明了算法的全局收敛性,并刻画了算法的复杂度$O\left( {{\varepsilon ^{ - 2}}}\right)$。应用该算法求解机器学习中的一类非凸二元分类问题,数值实验结果验证了算法的有效性。

关键词: 大规模可分非凸优化, 二阶分裂算法, 非精确Hessian信息, 全局收敛性, 算法复杂度, 非凸二元分类问题

Abstract: Combining cubic regularization and trust region method to solve the subproblem, we propose a second-order splitting algorithm for a class of large scale separable nonconvex optimization problems under inexact Hessian information. The global convergence result is obtained under some mild assumptions. It is proved that the algorithm needs at most $O\left( {{\varepsilon ^{ - 2}}} \right)$ evaluations to produce a $\varepsilon $-approximate stable solution. The algorithm is employed to solve a nonconvex binary classification problem in machine learning with nice numerical experiments results.

Key words: large scale separable non-convex optimization problems, second-order splitting algorithm, inexact Hessian information, global convergence, complexity analysis, nonconvex binary classification

中图分类号: