运筹学学报(中英文) ›› 2025, Vol. 29 ›› Issue (2): 221-229.doi: 10.15960/j.cnki.issn.1007-6093.2025.02.018

• 论文 • 上一篇    下一篇

{C5, C6}的平面Turán数

杜良丽1, 王兵1,*()   

  1. 1. 滁州学院数学与金融学院, 安徽滁州 239012
  • 收稿日期:2022-06-22 出版日期:2025-06-15 发布日期:2025-06-12
  • 通讯作者: 王兵 E-mail:wuyuwuyou@126.com
  • 基金资助:
    国家自然科学基金(12171066);安徽省自然科学基金(2108085MA13);安徽省高等学校自然科学研究一般项目(KJ2021B17)

Planar Turán numbers of {C5, C6}

Liangli DU1, Bing WANG1,*()   

  1. 1. School of Mathematics and Finance, Chuzhou University, Chuzhou 239012, Anhui, China
  • Received:2022-06-22 Online:2025-06-15 Published:2025-06-12
  • Contact: Bing WANG E-mail:wuyuwuyou@126.com

摘要:

$\mathcal{H}$是一个图族。$\mathcal{H}$的平面Turán数, 记为$\text{ex}_{\mathcal{P}}(n,\mathcal{H})$, 表示不包含$\mathcal{H}$中任一个图的n阶平面图的最大边数。本文研究图的特定子图-三角块的划分, 在该划分基础上对每个三角块对图G的顶点、边和面的贡献计数。结合平面图的结构特性并通过双向计数和归纳技巧得到如下结果: 设G是禁用$\{C_5,C_6\}$的连通n阶平面图, 如果$n \geq 14$, 则$e(G)\leq\frac{30n-84}{13}$。在此基础上, 构造了无穷多个达到该界值的极图。

关键词: Turán数, 平面图, 5-圈, 6-圈

Abstract:

Let $\mathcal{H}$ be a family of graphs. The planar Turán number of $\mathcal{H}$, denoted by ex$_{\mathcal{P}}(n,\mathcal{H})$, is the maximum number of edges over all planar graphs on n vertices that do not contain any $H\in\mathcal{H}$ as a subgraph. In this paper, we partition the graph into some specific subgraphs called as triangle blocks. Based on the partition, we calculate the contribution of each triangle block to the vertex, edge and face to graph G, respectively. Considered the structure of plane graph and by double-counting techniques and induction on the order of G, we obtained the following result: Let G be a connected $\{C_5,C_6\}$-free plane graph on n vertices, if $n\geq14$, then $e(G)\leq\frac{30n-84}{13}$. We also give infinitely many graphs which attain these bounds.

Key words: Turán number, planar graph, 5-cycle, 6-cycle

中图分类号: