运筹学学报(中英文) ›› 2024, Vol. 28 ›› Issue (4): 143-151.doi: 10.15960/j.cnki.issn.1007-6093.2024.04.014

•   • 上一篇    下一篇

不含短圈的平面图的injective边染色

卜月华1,2,*(), 陈雯雯1, 朱俊蕾3   

  1. 1. 浙江师范大学数学与计算机科学学院, 浙江金华 321004
    2. 浙江师范大学行知学院, 浙江金华 321004
    3. 嘉兴学院数据科学学院, 浙江嘉兴 314001
  • 收稿日期:2021-03-19 出版日期:2024-12-15 发布日期:2024-12-20
  • 通讯作者: 卜月华 E-mail:yhbu@zjnu.edu.cn
  • 基金资助:
    国家自然科学基金(11771403);国家自然科学基金(11901243);浙江省自然科学基金(LQ19A010005)

Injective edge coloring of planar graphs without short cycles

Yuehua BU1,2,*(), Wenwen CHEN1, Junlei ZHU3   

  1. 1. College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
    2. Xingzhi College, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
    3. College of Data Science, Jiaxing University, Jiaxing 314001, Zhejiang, China
  • Received:2021-03-19 Online:2024-12-15 Published:2024-12-20
  • Contact: Yuehua BU E-mail:yhbu@zjnu.edu.cn

摘要:

2015年Cardoso等人在探究电台网络打包(PRN)问题时给出了injective-边染色的概念。图的$k$-injective-边染色是指对于图$G$给定一个边染色$f: E(G)\rightarrow C=\{1,2,\cdots,k\}$, 若$e_{1},\ e_{2},\ e_{3}$$G$中连续的3条边, 则有$f(e_{1})\neq f(e_{3})$。图$G$的injective-边染色数是指使得图$G$存在一个$k$-injective-边染色的最小整数$k$, 用$\chi'_{i}(G)$表示。本文运用极小反例和权转移方法证明了: 对不包含$k$-圈且$4^{-}$-圈互不相交的平面图$G$, 有$\chi'_{i}(G)\leqslant 3\Delta(G)-2$, 其中$5\leq k\leq10$

关键词: injective-边染色, 平面图, 最大度,

Abstract:

To explore radio network packaging issues, Cardoso et al. proposed the concept of injective edge coloring of a graph in 2015. A $k$-injective edge coloring of $G$ is a coloring of the edges of $G, f$: $E(G)\to C=\{1,2,\cdots,k\}$, such that if $e_{1},\ e_{2},\ e_{3}$ are three consecutive edges in $G$, then $f(e_{1})\neq f(e_{3})$, where $e_{1},\ e_{2}$ and $e_{3}$ are consecutive if they form a path or a cycle of length 3. The injective edge coloring number, denoted by $\chi'_{i}(G)$, is the minimum number of colors such that $G$ has such a coloring. In this paper, we use minimal counter example and power transfer method to prove that if $G$ is a planar graph without $k$-cycles and $4^{-}$-cycles disjoint, then $\chi'_{i}(G)\leq3\Delta(G)-2$, where $5\leq k\leq10$.

Key words: injective edge coloring, planar graph, maximum degree, cycle

中图分类号: