1 |
Charnes A , Cooper W W , Rhodes E . Measuring the efficiency of decision making units[J]. European Journal of Operational Research, 1978, 2 (6): 429- 444.
doi: 10.1016/0377-2217(78)90138-8
|
2 |
Chen L , Huang Y , Li M J , et al. Meta-frontier analysis using cross-efficiency method for performance evaluation[J]. European Journal of Operational Research, 2020, 280 (1): 219- 229.
doi: 10.1016/j.ejor.2019.06.053
|
3 |
Wu J , Chu J , Sun J , et al. DEA cross-efficiency evaluation based on Pareto improvement[J]. European Journal of Operational Research, 2016, 248 (2): 571- 579.
doi: 10.1016/j.ejor.2015.07.042
|
4 |
An Q , Wen Y , Ding T , et al. Resource sharing and payoff allocation in a three-stage system: Integrating network DEA with the Shapley value method[J]. Omega, 2019, 85, 16- 25.
doi: 10.1016/j.omega.2018.05.008
|
5 |
Chen K , Cook W D , Zhu J . A conic relaxation model for searching for the global optimum of network data envelopment analysis[J]. European Journal of Operational Research, 2020, 280 (1): 242- 253.
doi: 10.1016/j.ejor.2019.07.012
|
6 |
Ruiz J L , Sirvent I . Common benchmarking and ranking of units with DEA[J]. Omega, 2016, 65, 1- 9.
doi: 10.1016/j.omega.2015.11.007
|
7 |
Banker R D , Chang H , Natarajan R . Productivity change, technical progress, and relative efficiency change in the public accounting industry[J]. Management Science, 2005, 51 (2): 291- 304.
doi: 10.1287/mnsc.1040.0324
|
8 |
Pastor J T , Lovell C A K , Aparicio J . Defining a new graph inefficiency measure for the proportional directional distance function and introducing a new Malmquist productivity index[J]. European Journal of Operational Research, 2020, 281 (1): 222- 230.
doi: 10.1016/j.ejor.2019.08.021
|
9 |
Wu J , Chu J , An Q , et al. Resource reallocation and target setting for improving environmental performance of DMUs: An application to regional highway transportation systems in China[J]. Transportation Research Part D: Transport and Environment, 2018, 61, 204- 216.
doi: 10.1016/j.trd.2016.09.002
|
10 |
Chen C M , Zhu J . Efficient resource allocation via efficiency bootstraps: an application to R & D project budgeting[J]. Operations Research, 2011, 59 (3): 729- 741.
doi: 10.1287/opre.1110.0920
|
11 |
Podinovski V V . Returns to scale in convex production technologies[J]. European Journal of Operational Research, 2017, 258 (3): 970- 982.
doi: 10.1016/j.ejor.2016.09.029
|
12 |
张晓明, 王应明, 施海柳. 考虑非期望规模收益的创新型企业并购决策[J]. 运筹学学报, 2018, 22 (1): 42- 54.
|
13 |
Cooper W W , Park K S , Yu G . IDEA and AR-IDEA: Models for dealing with imprecise data in DEA[J]. Management Science, 1999, 45 (4): 597- 607.
doi: 10.1287/mnsc.45.4.597
|
14 |
Wang Y M , Greatbanks R , Yang J B . Interval efficiency assessment using data envelopment analysis[J]. Fuzzy Sets and Systems, 2005, 153 (3): 347- 370.
doi: 10.1016/j.fss.2004.12.011
|
15 |
Kao C . Interval efficiency measures in data envelopment analysis with imprecise data[J]. European Journal of Operational Research, 2006, 174 (2): 1087- 1099.
doi: 10.1016/j.ejor.2005.03.009
|
16 |
Yang F , Ang S , Xia Q , et al. Ranking DMUs by using interval DEA cross efficiency matrix with acceptability analysis[J]. European Journal of Operational Research, 2012, 223 (2): 483- 488.
doi: 10.1016/j.ejor.2012.07.001
|
17 |
范建平, 岳未祯, 吴美琴. 基于误差传递和熵的区间DEA方法[J]. 系统工程理论与实践, 2015, 35 (5): 1293- 1303.
|
18 |
Azizi H , Kordrostami S , Amirteimoori A . Slacks-based measures of efficiency in imprecise data envelopment analysis: An approach based on data envelopment analysis with double frontiers[J]. Computers & Industrial Engineering, 2015, 79, 42- 51.
|
19 |
蓝以信, 王旭, 王应明. 区间型产出下的DEA-Malmquist生产率指数及其应用研究[J]. 系统科学与数学, 2017, 37 (6): 1494- 1508.
|
20 |
Sinuany-Stern Z , Friedman L . DEA and the discriminant analysis of ratios for ranking units[J]. European Journal of Operational Research, 1998, 111 (3): 470- 478.
doi: 10.1016/S0377-2217(97)00313-5
|
21 |
许皓, 孙燕红, 华中生. 基于整体效率的区间DEA方法研究[J]. 中国管理科学, 2010, 18 (2): 102- 107.
|
22 |
Hatami M A , Tavana M , Agrell P J , et al. A common-weights DEA model for centralized resource reduction and target setting[J]. Computers & Industrial Engineering, 2015, 79, 195- 203.
|
23 |
Lotfi F H , Hatami-Marbini A , Agrell P J , et al. Allocating fixed resources and setting targets using a common-weights DEA approach[J]. Computers & Industrial Engineering, 2013, 64 (2): 631- 640.
|
24 |
Mehrabian S , Jahanshahloo G R , Alirezaee M R , et al. An assurance interval for the non-Archimedean epsilon in DEA models[J]. Operations Research, 2000, 48 (2): 344- 347.
doi: 10.1287/opre.48.2.344.12381
|
25 |
Amin G R , Toloo M . A polynomial-time algorithm for finding $ \varepsilon $ in DEA models[J]. Computers & Operations Research, 2004, 31 (5): 803- 805.
|
26 |
成达建, 薛声家. 基于交叉效率新计算方法的区间效率值排序[J]. 中国管理科学, 2017, 25 (7): 191- 196.
|
27 |
李德清, 谷云东. 一种基于可能度的区间数排序方法[J]. 系统工程学报, 2008, 23 (2): 243- 246.
|
28 |
李德清, 韩国柱, 曾文艺, 等. 基于布尔矩阵的区间数排序方法[J]. 控制与决策, 2016, 31 (4): 629- 634.
|