运筹学学报 ›› 2021, Vol. 25 ›› Issue (3): 200-216.doi: 10.15960/j.cnki.issn.1007-6093.2021.03.013

• • 上一篇    

图的平面Turán数和平面anti-Ramsey数

兰永新1, 史永堂2,*, 宋梓霞3   

  1. 1. 河北工业大学理学院, 天津 300401;
    2. 南开大学组合数学中心, 天津 300071;
    3. 中佛罗里达大学数学系, 奥兰多 FL 32816, 美国
  • 收稿日期:2021-03-15 发布日期:2021-09-26
  • 通讯作者: 史永堂 E-mail:shi@nankai.edu.cn
  • 基金资助:
    国家自然科学基金(Nos.12001154,11922112,11771221),美国国家科学基金(No.DMS-1854903),天津市自然科学基金(Nos.20JCJQJC00090,20JCZDJC00840),中央高校南开大学基本科研业务费专项资金(No.63213037),天津市共建高校专项资金(No.280000307)

Planar Turán number and planar anti-Ramsey number of graphs

LAN Yongxin1, SHI Yongtang2,*, SONG Zixia3   

  1. 1. School of Science, Hebei University of Technology, Tianjin 300401, China;
    2. Center for Combinatorics and LPMC, Nankai University, Tianjin 300071, China;
    3. Department of Mathematics, University of Central Florida, Orlando, FL 32816, USA
  • Received:2021-03-15 Published:2021-09-26

摘要: 在所有顶点数为$n$且不包含图$G$作为子图的平面图中,具有最多边数的图的边数称为图$G$的平面Turán数,记为$ex_{_\mathcal{P}}(n,G)$。给定正整数$n$以及平面图$H$,用$\mathcal{T}_n (H)$来表示所有顶点数为$n$且不包含$H$作为子图的平面三角剖分图所组成的图集合。设图集合$\mathcal{T}_n (H)$中的任意平面三角剖分图的任意$k$边染色都不包含彩虹子图$H$,则称满足上述条件的$k$的最大值为图$H$的平面anti-Ramsey数,记作$ar_{_\mathcal{P}}(n,H)$。两类问题的研究均始于2015年左右,至今已经引起了广泛关注。全面地综述两类问题的主要研究成果,以及一些公开问题。

关键词: 平面Turán数, 平面anti-Ramsey数, Theta图

Abstract: The planar Turán number of a graph $G$, denoted $ex_{_\mathcal{P}}(n,G)$, is the maximum number of edges in a planar graph on $n$ vertices without containing $G$ as a subgraph. Given a positive integer $n$ and a plane graph $H$, let $\mathcal{T}_n(H)$ be the family of all plane triangulations $T$ on $n$ vertices such that $T$ contains $H$ as a subgraph. The planar anti-Ramsey number of $H$, denoted $ar_{_\mathcal{P}}(n, H)$, is the maximum number $k$ such that no edge-coloring of any plane triangulation in $\mathcal{T}_n(H)$ with $k$ colors contains a rainbow copy of $H$. The study of these two topics was initiated around 2015, and has attracted extensive attention. This paper surveys results about planar Turán number and planar anti-Ramsey number of graphs. The goal is to give a unified and comprehensive presentation of the major results, as well as to highlight some open problems.

Key words: planar Turán number, planar anti-Ramsey number, Theta graph

中图分类号: